The signals will only perfectly cancel when they are separated by a distance that is exactly one half the wavelength. Assuming you separate the two transmit antennas by this distance at the carrier frequency, then there will be a limitation on the available bandwidth. This is because the further you get away from center frequency, and away from the ideal antenna spacing, the less destructive interference you will have (and the more your transmit signal will leak into your receive signal). So you will double your capacity for only narrowband channels.
The pdf gives actual numbers. I just wanted to point out that there is a limitation on bandwidth.
You might also think, "If I know what I'm transmitting, why can't I just subtract it from what I receive?" This has to do with the dynamic range of the receiver, which is a function of the number of bits in your analog to digital converter. You must attenuate your received signal so that you don't saturate your converter. Have you ever turned the volume up so loud that you begin to hear distortion? It's the same thing.
So you are receiving this loud unwanted transmit signal, and this soft receive signal. You must lower the volume so that you are not distorting the highest signal. This lowers the volume on the desired signal as well. You can lower it so much that your analog to digital converter is not able to differentiate between a 1 and a 0 anymore.
I think if you could have an A2D with enough bits that you didn't care if you received the transmitted signal, then you could just carefully subtract out the unwanted transmit signal. Maybe I should patent that? Meh. I'm probably wrong.