Comment Re: I (partially) concur (Score 1) 73
PC133 does result in a very small increase in performance, mainly because most x86 chips sold nowadays have high-powered on-chip caches - either lots of cache memory (as with the PII and PIII series), or very fast cache memory (as with the K6-III and Celeron). Main memory (and L3 cache, for the AMD chip) simply isn't accessed often enough during normal operation for a 33% increase in speed to be noticed.
But I doubt the price difference will be so great as to be called "astronomical". PC133 is a new spec supported by few motherboards, and all things PC133 are priced at a premium right now. But prices will soon drop as PC133 becomes more common. Wasn't it Micron which recently announced that PC133 prices would be similar to PC100 prices now once high volume production commenced?
As a side note, among the three benchmarks Tom used were two floating-point intensive benchmarks (Expendible and Naturally Speaking). Floating-point performance is dependant on CPU speed moreso than memory/cache speed. And the third benckmark (WinBench 99) is known to be more favorable to chips with on-chip caches, suggesting that main memory speed is less significant in these benchmarks. Then again, Naturally Speaking probably involves accessing/manipulating a large amount of data in main memory (and sure enough, notice the 8% performance increase...). My point being that these benchmarks alone may not tell the whole story. I bet the K6-2, for instance, would benefit quite a bit from PC133 (and notice that there are rumors of AMD releasing a "K6-2 Pro" with PC133 support).
But I doubt the price difference will be so great as to be called "astronomical". PC133 is a new spec supported by few motherboards, and all things PC133 are priced at a premium right now. But prices will soon drop as PC133 becomes more common. Wasn't it Micron which recently announced that PC133 prices would be similar to PC100 prices now once high volume production commenced?
As a side note, among the three benchmarks Tom used were two floating-point intensive benchmarks (Expendible and Naturally Speaking). Floating-point performance is dependant on CPU speed moreso than memory/cache speed. And the third benckmark (WinBench 99) is known to be more favorable to chips with on-chip caches, suggesting that main memory speed is less significant in these benchmarks. Then again, Naturally Speaking probably involves accessing/manipulating a large amount of data in main memory (and sure enough, notice the 8% performance increase...). My point being that these benchmarks alone may not tell the whole story. I bet the K6-2, for instance, would benefit quite a bit from PC133 (and notice that there are rumors of AMD releasing a "K6-2 Pro" with PC133 support).