Best GLM-4.7 Alternatives in 2026

Find the top alternatives to GLM-4.7 currently available. Compare ratings, reviews, pricing, and features of GLM-4.7 alternatives in 2026. Slashdot lists the best GLM-4.7 alternatives on the market that offer competing products that are similar to GLM-4.7. Sort through GLM-4.7 alternatives below to make the best choice for your needs

  • 1
    Claude Sonnet 4.5 Reviews
    Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies.
  • 2
    Claude Opus 4.5 Reviews
    Anthropic’s release of Claude Opus 4.5 introduces a frontier AI model that excels at coding, complex reasoning, deep research, and long-context tasks. It sets new performance records on real-world engineering benchmarks, handling multi-system debugging, ambiguous instructions, and cross-domain problem solving with greater precision than earlier versions. Testers and early customers reported that Opus 4.5 “just gets it,” offering creative reasoning strategies that even benchmarks fail to anticipate. Beyond raw capability, the model brings stronger alignment and safety, with notable advances in prompt-injection resistance and behavior consistency in high-stakes scenarios. The Claude Developer Platform also gains richer controls including effort tuning, multi-agent orchestration, and context management improvements that significantly boost efficiency. Claude Code becomes more powerful with enhanced planning abilities, multi-session desktop support, and better execution of complex development workflows. In the Claude apps, extended memory and automatic context summarization enable longer, uninterrupted conversations. Together, these upgrades showcase Opus 4.5 as a highly capable, secure, and versatile model designed for both professional workloads and everyday use.
  • 3
    GLM-4.6 Reviews
    GLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology.
  • 4
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 5
    GPT-5.2 Reviews
    GPT-5.2 marks a new milestone in the evolution of the GPT-5 series, bringing heightened intelligence, richer context understanding, and smoother conversational behavior. The updated architecture introduces multiple enhanced variants that work together to produce clearer reasoning and more accurate interpretations of user needs. GPT-5.2 Instant remains the main model for everyday interactions, now upgraded with faster response times, stronger instruction adherence, and more reliable contextual continuity. For users tackling complex or layered tasks, GPT-5.2 Thinking provides deeper cognitive structure, offering step-by-step explanations, stronger logical flow, and improved endurance across long-form reasoning challenges. The platform automatically determines which model variant is optimal for any query, ensuring users always benefit from the most appropriate capabilities. These advancements reduce friction, simplify workflows, and produce answers that feel more grounded and intention-aware. In addition to intelligence upgrades, GPT-5.2 emphasizes conversational naturalness, making exchanges feel more intuitive and humanlike. Overall, this release delivers a more capable, responsive, and adaptive AI experience across all forms of interaction.
  • 6
    GPT-5.1 Reviews
    The latest iteration in the GPT-5 series, known as GPT-5.1, aims to significantly enhance the intelligence and conversational abilities of ChatGPT. This update features two separate model types: GPT-5.1 Instant, recognized as the most popular option, is characterized by a warmer demeanor, improved instruction adherence, and heightened intelligence; on the other hand, GPT-5.1 Thinking has been fine-tuned as an advanced reasoning engine, making it easier to grasp, quicker for simpler tasks, and more diligent when tackling complex issues. Additionally, queries from users are now intelligently directed to the model variant that is best equipped for the specific task at hand. This update not only focuses on boosting raw cognitive capabilities but also on refining the communication style, resulting in models that are more enjoyable to interact with and better aligned with users' intentions. Notably, the system card addendum indicates that GPT-5.1 Instant employs a feature called "adaptive reasoning," allowing it to determine when deeper thought is necessary before formulating a response, while GPT-5.1 Thinking adjusts its reasoning time precisely in relation to the complexity of the question posed. Ultimately, these advancements mark a significant step forward in making AI interactions more intuitive and user-friendly.
  • 7
    Gemini 3 Flash Reviews
    Gemini 3 Flash is a next-generation AI model created to deliver powerful intelligence without sacrificing speed. Built on the Gemini 3 foundation, it offers advanced reasoning and multimodal capabilities with significantly lower latency. The model adapts its thinking depth based on task complexity, optimizing both performance and efficiency. Gemini 3 Flash is engineered for agentic workflows, iterative development, and real-time applications. Developers benefit from faster inference and strong coding performance across benchmarks. Enterprises can deploy it at scale through Vertex AI and Gemini Enterprise. Consumers experience faster, smarter assistance across the Gemini app and Search. Gemini 3 Flash makes high-performance AI practical for everyday use.
  • 8
    Kimi K2 Thinking Reviews
    Kimi K2 Thinking is a sophisticated open-source reasoning model created by Moonshot AI, specifically tailored for intricate, multi-step workflows where it effectively combines chain-of-thought reasoning with tool utilization across numerous sequential tasks. Employing a cutting-edge mixture-of-experts architecture, the model encompasses a staggering total of 1 trillion parameters, although only around 32 billion parameters are utilized during each inference, which enhances efficiency while retaining significant capability. It boasts a context window that can accommodate up to 256,000 tokens, allowing it to process exceptionally long inputs and reasoning sequences without sacrificing coherence. Additionally, it features native INT4 quantization, which significantly cuts down inference latency and memory consumption without compromising performance. Designed with agentic workflows in mind, Kimi K2 Thinking is capable of autonomously invoking external tools, orchestrating sequential logic steps—often involving around 200-300 tool calls in a single chain—and ensuring consistent reasoning throughout the process. Its robust architecture makes it an ideal solution for complex reasoning tasks that require both depth and efficiency.
  • 9
    Grok 4.1 Reviews
    Grok 4.1, developed by Elon Musk’s xAI, represents a major step forward in multimodal artificial intelligence. Built on the Colossus supercomputer, it supports input from text, images, and soon video—offering a more complete understanding of real-world data. This version significantly improves reasoning precision, enabling Grok to solve complex problems in science, engineering, and language with remarkable clarity. Developers and researchers can leverage Grok 4.1’s advanced APIs to perform deep contextual analysis, creative generation, and data-driven research. Its refined architecture allows it to outperform leading models in visual problem-solving and structured reasoning benchmarks. xAI has also strengthened the model’s moderation framework, addressing bias and ensuring more balanced responses. With its multimodal flexibility and intelligent output control, Grok 4.1 bridges the gap between analytical computation and human intuition. It’s a model designed not just to answer questions, but to understand and reason through them.
  • 10
    Gemini 3 Pro Reviews
    Gemini 3 Pro is a next-generation AI model from Google designed to push the boundaries of reasoning, creativity, and code generation. With a 1-million-token context window and deep multimodal understanding, it processes text, images, and video with unprecedented accuracy and depth. Gemini 3 Pro is purpose-built for agentic coding, performing complex, multi-step programming tasks across files and frameworks—handling refactoring, debugging, and feature implementation autonomously. It integrates seamlessly with development tools like Google Antigravity, Gemini CLI, Android Studio, and third-party IDEs including Cursor and JetBrains. In visual reasoning, it leads benchmarks such as MMMU-Pro and WebDev Arena, demonstrating world-class proficiency in image and video comprehension. The model’s vibe coding capability enables developers to build entire applications using only natural language prompts, transforming high-level ideas into functional, interactive apps. Gemini 3 Pro also features advanced spatial reasoning, powering applications in robotics, XR, and autonomous navigation. With its structured outputs, grounding with Google Search, and client-side bash tool, Gemini 3 Pro enables developers to automate workflows and build intelligent systems faster than ever.
  • 11
    Mistral Large 3 Reviews
    Mistral Large 3 pushes open-source AI into frontier territory with a massive sparse MoE architecture that activates 41B parameters per token while maintaining a highly efficient 675B total parameter design. It sets a new performance standard by combining long-context reasoning, multilingual fluency across 40+ languages, and robust multimodal comprehension within a single unified model. Trained end-to-end on thousands of NVIDIA H200 GPUs, it reaches parity with top closed-source instruction models while remaining fully accessible under the Apache 2.0 license. Developers benefit from optimized deployments through partnerships with NVIDIA, Red Hat, and vLLM, enabling smooth inference on A100, H100, and Blackwell-class systems. The model ships in both base and instruct variants, with a reasoning-enhanced version on the way for even deeper analytical capabilities. Beyond general intelligence, Mistral Large 3 is engineered for enterprise customization, allowing organizations to refine the model on internal datasets or domain-specific tasks. Its efficient token generation and powerful multimodal stack make it ideal for coding, document analysis, knowledge workflows, agentic systems, and multilingual communications. With Mistral Large 3, organizations can finally deploy frontier-class intelligence with full transparency, flexibility, and control.
  • 12
    Grok Code Fast 1 Reviews

    Grok Code Fast 1

    xAI

    $0.20 per million input tokens
    Grok Code Fast 1 introduces a new class of coding-focused AI models that prioritize responsiveness, affordability, and real-world usability. Tailored for agentic coding platforms, it eliminates the lag developers often experience with reasoning loops and tool calls, creating a smoother workflow in IDEs. Its architecture was trained on a carefully curated mix of programming content and fine-tuned on real pull requests to reflect authentic development practices. With proficiency across multiple languages, including Python, Rust, TypeScript, C++, Java, and Go, it adapts to full-stack development scenarios. Grok Code Fast 1 excels in speed, processing nearly 190 tokens per second while maintaining reliable performance across bug fixes, code reviews, and project generation. Pricing makes it widely accessible at $0.20 per million input tokens, $1.50 per million output tokens, and just $0.02 for cached inputs. Early testers, including GitHub Copilot and Cursor users, praise its responsiveness and quality. For developers seeking a reliable coding assistant that’s both fast and cost-effective, Grok Code Fast 1 is a daily driver built for practical software engineering needs.
  • 13
    Solar Pro 2 Reviews

    Solar Pro 2

    Upstage AI

    $0.1 per 1M tokens
    Upstage has unveiled Solar Pro 2, a cutting-edge large language model designed for frontier-scale applications, capable of managing intricate tasks and workflows in various sectors including finance, healthcare, and law. This model is built on a streamlined architecture with 31 billion parameters, ensuring exceptional multilingual capabilities, particularly in Korean, where it surpasses even larger models on key benchmarks such as Ko-MMLU, Hae-Rae, and Ko-IFEval, while maintaining strong performance in English and Japanese as well. In addition to its advanced language comprehension and generation abilities, Solar Pro 2 incorporates a sophisticated Reasoning Mode that significantly enhances the accuracy of multi-step tasks across a wide array of challenges, from general reasoning assessments (MMLU, MMLU-Pro, HumanEval) to intricate mathematics problems (Math500, AIME) and software engineering tasks (SWE-Bench Agentless), achieving problem-solving efficiency that rivals or even surpasses that of models with double the parameters. Furthermore, its enhanced tool-use capabilities allow the model to effectively engage with external APIs and data, broadening its applicability in real-world scenarios. This innovative design not only demonstrates exceptional versatility but also positions Solar Pro 2 as a formidable player in the evolving landscape of AI technologies.
  • 14
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 15
    Claude Opus 4.1 Reviews
    Claude Opus 4.1 represents a notable incremental enhancement over its predecessor, Claude Opus 4, designed to elevate coding, agentic reasoning, and data-analysis capabilities while maintaining the same level of deployment complexity. This version boosts coding accuracy to an impressive 74.5 percent on SWE-bench Verified and enhances the depth of research and detailed tracking for agentic search tasks. Furthermore, GitHub has reported significant advancements in multi-file code refactoring, and Rakuten Group emphasizes its ability to accurately identify precise corrections within extensive codebases without introducing any bugs. Independent benchmarks indicate that junior developer test performance has improved by approximately one standard deviation compared to Opus 4, reflecting substantial progress consistent with previous Claude releases. Users can access Opus 4.1 now, as it is available to paid subscribers of Claude, integrated into Claude Code, and can be accessed through the Anthropic API (model ID claude-opus-4-1-20250805), as well as via platforms like Amazon Bedrock and Google Cloud Vertex AI. Additionally, it integrates effortlessly into existing workflows, requiring no further setup beyond the selection of the updated model, thus enhancing the overall user experience and productivity.
  • 16
    Claude Sonnet 4 Reviews

    Claude Sonnet 4

    Anthropic

    $3 / 1 million tokens (input)
    1 Rating
    Claude Sonnet 4 is an advanced AI model that enhances coding, reasoning, and problem-solving capabilities, perfect for developers and businesses in need of reliable AI support. This new version of Claude Sonnet significantly improves its predecessor’s capabilities by excelling in coding tasks and delivering precise, clear reasoning. With a 72.7% score on SWE-bench, it offers exceptional performance in software development, app creation, and problem-solving. Claude Sonnet 4’s improved handling of complex instructions and reduced errors in codebase navigation make it the go-to choice for enhancing productivity in technical workflows and software projects.
  • 17
    DeepScaleR Reviews
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 18
    GPT-5.2-Codex Reviews
    GPT-5.2-Codex is a next-generation coding model created to support advanced, agent-driven software development. Built on the GPT-5.2 architecture, it is fine-tuned specifically for real-world engineering tasks. The model excels at working across large codebases while preserving context over long sessions. It handles complex refactors, migrations, and multi-step implementations more reliably than previous Codex models. GPT-5.2-Codex demonstrates top-tier performance in realistic terminal environments. Enhanced tool-calling and improved factual accuracy make it suitable for production workflows. The model is also significantly stronger in cybersecurity-related tasks. It can assist with vulnerability research and defensive security analysis. GPT-5.2-Codex includes safeguards designed to support responsible deployment. It represents a major advancement in professional-grade coding AI.
  • 19
    Gemini 2.5 Pro Reviews
    Gemini 2.5 Pro represents a cutting-edge AI model tailored for tackling intricate tasks, showcasing superior reasoning and coding skills. It stands out in various benchmarks, particularly in mathematics, science, and programming, where it demonstrates remarkable efficacy in activities such as web application development and code conversion. Building on the Gemini 2.5 framework, this model boasts a context window of 1 million tokens, allowing it to efficiently manage extensive datasets from diverse origins, including text, images, and code libraries. Now accessible through Google AI Studio, Gemini 2.5 Pro is fine-tuned for more advanced applications, catering to expert users with enhanced capabilities for solving complex challenges. Furthermore, its design reflects a commitment to pushing the boundaries of AI's potential in real-world scenarios.
  • 20
    Hermes 3 Reviews
    Push the limits of individual alignment, artificial consciousness, open-source software, and decentralization through experimentation that larger corporations and governments often shy away from. Hermes 3 features sophisticated long-term context retention, the ability to engage in multi-turn conversations, and intricate roleplaying and internal monologue capabilities, alongside improved functionality for agentic function-calling. The design of this model emphasizes precise adherence to system prompts and instruction sets in a flexible way. By fine-tuning Llama 3.1 across various scales, including 8B, 70B, and 405B, and utilizing a dataset largely composed of synthetically generated inputs, Hermes 3 showcases performance that rivals and even surpasses Llama 3.1, while also unlocking greater potential in reasoning and creative tasks. This series of instructive and tool-utilizing models exhibits exceptional reasoning and imaginative skills, paving the way for innovative applications. Ultimately, Hermes 3 represents a significant advancement in the landscape of AI development.
  • 21
    Kimi K2 Reviews
    Kimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing.
  • 22
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 23
    Devstral Small 2 Reviews
    Devstral Small 2 serves as the streamlined, 24 billion-parameter version of Mistral AI's innovative coding-centric model lineup, released under the flexible Apache 2.0 license to facilitate both local implementations and API interactions. In conjunction with its larger counterpart, Devstral 2, this model introduces "agentic coding" features suitable for environments with limited computational power, boasting a generous 256K-token context window that allows it to comprehend and modify entire codebases effectively. Achieving a score of approximately 68.0% on the standard code-generation evaluation known as SWE-Bench Verified, Devstral Small 2 stands out among open-weight models that are significantly larger. Its compact size and efficient architecture enable it to operate on a single GPU or even in CPU-only configurations, making it an ideal choice for developers, small teams, or enthusiasts lacking access to expansive data-center resources. Furthermore, despite its smaller size, Devstral Small 2 successfully maintains essential functionalities of its larger variants, such as the ability to reason through multiple files and manage dependencies effectively, ensuring that users can still benefit from robust coding assistance. This blend of efficiency and performance makes it a valuable tool in the coding community.
  • 24
    Grok 3 DeepSearch Reviews
    Grok 3 DeepSearch represents a sophisticated research agent and model aimed at enhancing the reasoning and problem-solving skills of artificial intelligence, emphasizing deep search methodologies and iterative reasoning processes. In contrast to conventional models that depend primarily on pre-existing knowledge, Grok 3 DeepSearch is equipped to navigate various pathways, evaluate hypotheses, and rectify inaccuracies in real-time, drawing from extensive datasets while engaging in logical, chain-of-thought reasoning. Its design is particularly suited for tasks necessitating critical analysis, including challenging mathematical equations, programming obstacles, and detailed academic explorations. As a state-of-the-art AI instrument, Grok 3 DeepSearch excels in delivering precise and comprehensive solutions through its distinctive deep search functionalities, rendering it valuable across both scientific and artistic disciplines. This innovative tool not only streamlines problem-solving but also fosters a deeper understanding of complex concepts.
  • 25
    MiniMax-M2.1 Reviews
    MiniMax-M2.1 is a state-of-the-art open-source AI model built specifically for agent-based development and real-world automation. It focuses on delivering strong performance in coding, tool calling, and long-term task execution. Unlike closed models, MiniMax-M2.1 is fully transparent and can be deployed locally or integrated through APIs. The model excels in multilingual software engineering tasks and complex workflow automation. It demonstrates strong generalization across different agent frameworks and development environments. MiniMax-M2.1 supports advanced use cases such as autonomous coding, application building, and office task automation. Benchmarks show significant improvements over previous MiniMax versions. The model balances high reasoning ability with stability and control. Developers can fine-tune or extend it for specialized agent workflows. MiniMax-M2.1 empowers teams to build reliable AI agents without vendor lock-in.
  • 26
    Amazon Nova 2 Pro Reviews
    Nova 2 Pro represents the pinnacle of Amazon’s Nova family, offering unmatched reasoning depth for enterprises that depend on advanced AI to solve demanding operational challenges. It supports multimodal inputs including video, audio, and long-form text, allowing it to synthesize diverse information sources and deliver expert-grade insights. Its performance leadership spans complex instruction following, high-stakes decision tasks, agentic workflows, and software engineering use cases. Benchmark testing shows Nova 2 Pro outperforms or matches the latest Claude, GPT, and Gemini models across numerous intelligence and reasoning categories. Equipped with built-in web search and executable code capability, it produces grounded, verifiable responses ideal for enterprise reliability. Organizations also use Nova 2 Pro as a foundation for training smaller, faster models through distillation, making it adaptable for custom deployments. Its multimodal strengths support use cases like video comprehension, multi-document Q&A, and sophisticated data interpretation. Nova 2 Pro ultimately empowers teams to operate with higher accuracy, faster iteration cycles, and safer automation across critical workflows.
  • 27
    Grok Voice Agent Reviews
    The Grok Voice Agent API allows developers to create advanced voice agents with industry-leading speed and intelligence. Built entirely in-house by xAI, the voice stack includes custom models for audio detection, tokenization, and speech generation. This deep control enables rapid performance improvements and ultra-low latency responses. Grok Voice Agents support dozens of languages with native-level fluency and can switch languages mid-conversation. The API consistently outperforms competing voice models in human evaluations for pronunciation and prosody. Real-time tool calling and live search across X and the web are supported. Developers can integrate custom tools to enable dynamic task execution. The API follows the OpenAI Realtime specification for easy adoption. Pricing is a flat per-minute rate, making costs predictable at scale. The Grok Voice Agent API is designed for production-ready voice applications.
  • 28
    Qwen Code Reviews
    Qwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows.
  • 29
    Mistral Large 2 Reviews
    Mistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities.
  • 30
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 31
    Grok 4.1 Fast Reviews
    Grok 4.1 Fast represents xAI’s leap forward in building highly capable agents that rely heavily on tool calling, long-context reasoning, and real-time information retrieval. It supports a robust 2-million-token window, enabling long-form planning, deep research, and multi-step workflows without degradation. Through extensive RL training and exposure to diverse tool ecosystems, the model performs exceptionally well on demanding benchmarks like τ²-bench Telecom. When paired with the Agent Tools API, it can autonomously browse the web, search X posts, execute Python code, and retrieve documents, eliminating the need for developers to manage external infrastructure. It is engineered to maintain intelligence across multi-turn conversations, making it ideal for enterprise tasks that require continuous context. Its benchmark accuracy on tool-calling and function-calling tasks clearly surpasses competing models in speed, cost, and reliability. Developers can leverage these strengths to build agents that automate customer support, perform real-time analysis, and execute complex domain-specific tasks. With its performance, low pricing, and availability on platforms like OpenRouter, Grok 4.1 Fast stands out as a production-ready solution for next-generation AI systems.
  • 32
    Ferret Reviews
    An advanced End-to-End MLLM is designed to accept various forms of references and effectively ground responses. The Ferret Model utilizes a combination of Hybrid Region Representation and a Spatial-aware Visual Sampler, which allows for detailed and flexible referring and grounding capabilities within the MLLM framework. The GRIT Dataset, comprising approximately 1.1 million entries, serves as a large-scale and hierarchical dataset specifically crafted for robust instruction tuning in the ground-and-refer category. Additionally, the Ferret-Bench is a comprehensive multimodal evaluation benchmark that simultaneously assesses referring, grounding, semantics, knowledge, and reasoning, ensuring a well-rounded evaluation of the model's capabilities. This intricate setup aims to enhance the interaction between language and visual data, paving the way for more intuitive AI systems.
  • 33
    Grok 4.1 Thinking Reviews
    Grok 4.1 Thinking is the reasoning-enabled version of Grok designed to handle complex, high-stakes prompts with deliberate analysis. Unlike fast-response models, it visibly works through problems using structured reasoning before producing an answer. This approach improves accuracy, reduces misinterpretation, and strengthens logical consistency across longer conversations. Grok 4.1 Thinking leads public benchmarks in general capability and human preference testing. It delivers advanced performance in emotional intelligence by understanding context, tone, and interpersonal nuance. The model is especially effective for tasks that require judgment, explanation, or synthesis of multiple ideas. Its reasoning depth makes it well-suited for analytical writing, strategy discussions, and technical problem-solving. Grok 4.1 Thinking also demonstrates strong creative reasoning without sacrificing coherence. The model maintains alignment and reliability even in ambiguous scenarios. Overall, it sets a new standard for transparent and thoughtful AI reasoning.
  • 34
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 35
    GLM-4.5 Reviews
    Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains.
  • 36
    Claude Opus 4 Reviews

    Claude Opus 4

    Anthropic

    $15 / 1 million tokens (input)
    1 Rating
    Claude Opus 4 is the pinnacle of AI coding models, leading the way in software engineering tasks with an impressive SWE-bench score of 72.5% and Terminal-bench score of 43.2%. Its ability to handle complex challenges, large codebases, and multiple files simultaneously sets it apart from all other models. Opus 4 excels at coding tasks that require extended focus and problem-solving, automating tasks for software developers, engineers, and data scientists. This AI model doesn’t just perform—it continuously improves its capabilities over time, handling real-world challenges and optimizing workflows with confidence. Available through multiple platforms like Anthropic API, Amazon Bedrock, and Google Cloud’s Vertex AI, Opus 4 is a must-have for cutting-edge developers and businesses looking to stay ahead.
  • 37
    Mistral Large Reviews
    Mistral Large stands as the premier language model from Mistral AI, engineered for sophisticated text generation and intricate multilingual reasoning tasks such as text comprehension, transformation, and programming code development. This model encompasses support for languages like English, French, Spanish, German, and Italian, which allows it to grasp grammar intricacies and cultural nuances effectively. With an impressive context window of 32,000 tokens, Mistral Large can retain and reference information from lengthy documents with accuracy. Its abilities in precise instruction adherence and native function-calling enhance the development of applications and the modernization of tech stacks. Available on Mistral's platform, Azure AI Studio, and Azure Machine Learning, it also offers the option for self-deployment, catering to sensitive use cases. Benchmarks reveal that Mistral Large performs exceptionally well, securing its position as the second-best model globally that is accessible via an API, just behind GPT-4, illustrating its competitive edge in the AI landscape. Such capabilities make it an invaluable tool for developers seeking to leverage advanced AI technology.
  • 38
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 39
    OpenAI o3 Reviews

    OpenAI o3

    OpenAI

    $2 per 1 million tokens
    OpenAI o3 is a cutting-edge AI model that aims to improve reasoning abilities by simplifying complex tasks into smaller, more digestible components. It shows remarkable advancements compared to earlier AI versions, particularly in areas such as coding, competitive programming, and achieving top results in math and science assessments. Accessible for general use, OpenAI o3 facilitates advanced AI-enhanced problem-solving and decision-making processes. The model employs deliberative alignment strategies to guarantee that its outputs adhere to recognized safety and ethical standards, positioning it as an invaluable resource for developers, researchers, and businesses in pursuit of innovative AI solutions. With its robust capabilities, OpenAI o3 is set to redefine the boundaries of artificial intelligence applications across various fields.
  • 40
    Amazon Nova 2 Lite Reviews
    The Nova 2 Lite is an efficient and rapid reasoning model specifically crafted to manage typical AI tasks related to text, images, and video. It produces coherent and context-sensitive responses while allowing users to adjust the level of internal reasoning, known as “thinking depth,” before arriving at an answer. This versatility empowers teams to opt for quicker responses or more thorough resolutions based on their specific needs. It is particularly effective in applications such as customer service chatbots, automated documentation processes, and overall business workflow enhancement. Nova 2 Lite excels in standard evaluation tests, often matching or surpassing other similar compact models in various benchmark assessments, which highlights its dependable understanding and quality of responses. Its notable capabilities encompass analyzing intricate documents, extracting precise insights from video materials, generating functional code, and providing well-grounded answers based on the information presented. Additionally, its adaptability makes it a valuable asset for diverse industries seeking to optimize their AI-driven solutions.
  • 41
    GPT-5.1-Codex Reviews
    GPT-5.1-Codex is an advanced iteration of the GPT-5.1 model specifically designed for software development and coding tasks that require autonomy. The model excels in both interactive coding sessions and sustained, independent execution of intricate engineering projects, which include tasks like constructing applications from the ground up, enhancing features, troubleshooting, conducting extensive code refactoring, and reviewing code. It effectively utilizes various tools, seamlessly integrates into developer environments, and adjusts its reasoning capacity based on task complexity, quickly addressing simpler challenges while dedicating more resources to intricate ones. Users report that GPT-5.1-Codex generates cleaner, higher-quality code than its general counterparts, showcasing a closer alignment with developer requirements and a reduction in inaccuracies. Additionally, the model is accessible through the Responses API route instead of the conventional chat API, offering different configurations such as a “mini” version for budget-conscious users and a “max” variant that provides the most robust capabilities. Overall, this specialized version aims to enhance productivity and efficiency in software engineering practices.
  • 42
    DeepSeek-V3.1-Terminus Reviews
    DeepSeek has launched DeepSeek-V3.1-Terminus, an upgrade to the V3.1 architecture that integrates user suggestions to enhance output stability, consistency, and overall agent performance. This new version significantly decreases the occurrences of mixed Chinese and English characters as well as unintended distortions, leading to a cleaner and more uniform language generation experience. Additionally, the update revamps both the code agent and search agent subsystems to deliver improved and more dependable performance across various benchmarks. DeepSeek-V3.1-Terminus is available as an open-source model, with its weights accessible on Hugging Face, making it easier for the community to leverage its capabilities. The structure of the model remains consistent with DeepSeek-V3, ensuring it is compatible with existing deployment strategies, and updated inference demonstrations are provided for users to explore. Notably, the model operates at a substantial scale of 685B parameters and supports multiple tensor formats, including FP8, BF16, and F32, providing adaptability in different environments. This flexibility allows developers to choose the most suitable format based on their specific needs and resource constraints.
  • 43
    Llama 4 Maverick Reviews
    Llama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands.
  • 44
    Qwen2 Reviews
    Qwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications.
  • 45
    Claude Opus 3 Reviews
    Opus, recognized as our most advanced model, surpasses its competitors in numerous widely-used evaluation benchmarks for artificial intelligence, including assessments of undergraduate expert knowledge (MMLU), graduate-level reasoning (GPQA), fundamental mathematics (GSM8K), and others. Its performance approaches human-like comprehension and fluency in handling intricate tasks, positioning it at the forefront of general intelligence advancements. Furthermore, all Claude 3 models demonstrate enhanced abilities in analysis and prediction, sophisticated content creation, programming code generation, and engaging in conversations in various non-English languages such as Spanish, Japanese, and French, showcasing their versatility in communication.