Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Llama (Large Language Model Meta AI) stands as a cutting-edge foundational large language model aimed at helping researchers push the boundaries of their work within this area of artificial intelligence. By providing smaller yet highly effective models like Llama, the research community can benefit even if they lack extensive infrastructure, thus promoting greater accessibility in this dynamic and rapidly evolving domain. Creating smaller foundational models such as Llama is advantageous in the landscape of large language models, as it demands significantly reduced computational power and resources, facilitating the testing of innovative methods, confirming existing research, and investigating new applications. These foundational models leverage extensive unlabeled datasets, making them exceptionally suitable for fine-tuning across a range of tasks. We are offering Llama in multiple sizes (7B, 13B, 33B, and 65B parameters), accompanied by a detailed Llama model card that outlines our development process while adhering to our commitment to Responsible AI principles. By making these resources available, we aim to empower a broader segment of the research community to engage with and contribute to advancements in AI.

Description

RoBERTa enhances the language masking approach established by BERT, where the model is designed to predict segments of text that have been deliberately concealed within unannotated language samples. Developed using PyTorch, RoBERTa makes significant adjustments to BERT's key hyperparameters, such as eliminating the next-sentence prediction task and utilizing larger mini-batches along with elevated learning rates. These modifications enable RoBERTa to excel in the masked language modeling task more effectively than BERT, resulting in superior performance in various downstream applications. Furthermore, we examine the benefits of training RoBERTa on a substantially larger dataset over an extended duration compared to BERT, incorporating both existing unannotated NLP datasets and CC-News, a new collection sourced from publicly available news articles. This comprehensive approach allows for a more robust and nuanced understanding of language.

API Access

Has API

API Access

Has API

Screenshots View All

No images available

Screenshots View All

Integrations

AnythingLLM
Basalt
Bolna
Code Llama
Cyte
Entry Point AI
Evertune
Llama Guard
Mangools
Mastra
NVIDIA Llama Nemotron
NeoAnalyst.ai
Oracle AI Agent Studio
Overseer AI
Pinecone Rerank v0
RankLLM
Scout
SectorFlow
Undrstnd
Unsloth

Integrations

AnythingLLM
Basalt
Bolna
Code Llama
Cyte
Entry Point AI
Evertune
Llama Guard
Mangools
Mastra
NVIDIA Llama Nemotron
NeoAnalyst.ai
Oracle AI Agent Studio
Overseer AI
Pinecone Rerank v0
RankLLM
Scout
SectorFlow
Undrstnd
Unsloth

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Meta

Founded

2004

Country

United States

Website

www.llama.com

Vendor Details

Company Name

Meta

Founded

2004

Country

United States

Website

ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/

Product Features

Alternatives

Alpaca Reviews

Alpaca

Stanford Center for Research on Foundation Models (CRFM)

Alternatives

Llama Reviews

Llama

Meta
BERT Reviews

BERT

Google
ALBERT Reviews

ALBERT

Google
BitNet Reviews

BitNet

Microsoft