Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
DagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains.
Description
Launch top-notch LLM applications swiftly while maintaining rigorous testing standards. You should never feel constrained by the intricate and often subjective aspects of LLM interactions. Generative AI often yields subjective outcomes, and determining the quality of generated content frequently necessitates the expertise of a subject matter professional. If you're developing an LLM application, you're likely aware of the myriad constraints and edge cases that must be managed before a successful release. Issues such as hallucinations, inaccurate responses, biases, policy deviations, and potentially harmful content must all be identified, investigated, and addressed both prior to and following the launch of your application. Deepchecks offers a solution that automates the assessment process, allowing you to obtain "estimated annotations" that only require your intervention when absolutely necessary. With over 1000 companies utilizing our platform and integration into more than 300 open-source projects, our core LLM product is both extensively validated and reliable. You can efficiently validate machine learning models and datasets with minimal effort during both research and production stages, streamlining your workflow and improving overall efficiency. This ensures that you can focus on innovation without sacrificing quality or safety.
API Access
Has API
API Access
Has API
Integrations
Python
Amazon SageMaker
Amazon Web Services (AWS)
GitHub
Google Cloud Platform
Google Colab
Hugging Face
Jupyter Notebook
Kaggle
Kubeflow
Integrations
Python
Amazon SageMaker
Amazon Web Services (AWS)
GitHub
Google Cloud Platform
Google Colab
Hugging Face
Jupyter Notebook
Kaggle
Kubeflow
Pricing Details
$9 per month
Free Trial
Free Version
Pricing Details
$1,000 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
DagsHub
Country
United States
Website
dagshub.com
Vendor Details
Company Name
Deepchecks
Founded
2019
Country
United States
Website
deepchecks.com