Average Ratings 0 Ratings
Average Ratings 3 Ratings
Description
Auger.AI delivers the most comprehensive solution for maintaining the accuracy of machine learning models. Our MLRAM tool (Machine Learning Review and Monitoring) guarantees that your models maintain their accuracy over time. It even assesses the return on investment for your predictive models! MLRAM is compatible with any machine learning technology stack. If your ML system lifecycle lacks ongoing measurement of model accuracy, you could be forfeiting profits due to erroneous predictions. Additionally, frequently retraining models can be costly and may not resolve issues caused by concept drift. MLRAM offers significant benefits for both data scientists and business professionals, featuring tools such as accuracy visualization graphs, performance and accuracy notifications, anomaly detection, and automated optimized retraining. Integrating your predictive model with MLRAM requires just a single line of code, making the process seamless. We also provide a complimentary one-month trial of MLRAM for eligible users. Ultimately, Auger.AI stands out as the most precise AutoML platform available, ensuring that your machine learning initiatives are both effective and efficient.
Description
The Microsoft Cognitive Toolkit (CNTK) is an open-source framework designed for high-performance distributed deep learning applications. It represents neural networks through a sequence of computational operations organized in a directed graph structure. Users can effortlessly implement and integrate various popular model architectures, including feed-forward deep neural networks (DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs/LSTMs). CNTK employs stochastic gradient descent (SGD) along with error backpropagation learning, enabling automatic differentiation and parallel processing across multiple GPUs and servers. It can be utilized as a library within Python, C#, or C++ applications, or operated as an independent machine-learning tool utilizing its own model description language, BrainScript. Additionally, CNTK's model evaluation capabilities can be accessed from Java applications, broadening its usability. The toolkit is compatible with 64-bit Linux as well as 64-bit Windows operating systems. For installation, users have the option of downloading pre-compiled binary packages or building the toolkit from source code available on GitHub, which provides flexibility depending on user preferences and technical expertise. This versatility makes CNTK a powerful tool for developers looking to harness deep learning in their projects.
API Access
Has API
API Access
Has API
Integrations
Activeeon ProActive
Alteryx
Amazon Web Services (AWS)
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Google Cloud Platform
Microsoft Azure
Microsoft Dynamics 365 Finance
Integrations
Activeeon ProActive
Alteryx
Amazon Web Services (AWS)
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Google Cloud Platform
Microsoft Azure
Microsoft Dynamics 365 Finance
Pricing Details
$200 per month
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Auger.AI
Founded
2019
Country
United States
Website
auger.ai/
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
docs.microsoft.com/en-us/cognitive-toolkit/
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization