Best Auger.AI Alternatives in 2026
Find the top alternatives to Auger.AI currently available. Compare ratings, reviews, pricing, and features of Auger.AI alternatives in 2026. Slashdot lists the best Auger.AI alternatives on the market that offer competing products that are similar to Auger.AI. Sort through Auger.AI alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
783 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Fraud.net
Fraud.net, Inc.
56 RatingsDon't let fraud erode your bottom line, damage your reputation, or stall your growth. FraudNet's AI-driven platform empowers enterprises to stay ahead of threats, streamline compliance, and manage risk at scale—all in real-time. While fraudsters evolve tactics, our platform detects tomorrow's threats, delivering risk assessments through insights from billions of analyzed transactions. Imagine transforming your fraud prevention with a single, robust platform: comprehensive screening for smoother onboarding and reduced risk exposure, continuous monitoring to proactively identify and block new threats, and precision fraud detection across channels and payment types with real-time, AI-powered risk scoring. Our proprietary machine learning models continuously learn and improve, identifying patterns invisible to traditional systems. Paired with our Data Hub of dozens of third-party data integrations, you'll gain unprecedented fraud and risk protection while slashing false positives and eliminating operational inefficiencies. The impact is undeniable. Leading payment companies, financial institutions, innovative fintechs, and commerce brands trust our AI-powered solutions worldwide, and they're seeing dramatic results: 80% reduction in fraud losses and 97% fewer false positives. With our flexible no-code/low-code architecture, you can scale effortlessly as you grow. Why settle for outdated fraud and risk management systems when you could be building resilience for future opportunities? See the Fraud.Net difference for yourself. Request your personalized demo today and discover how we can help you strengthen your business against threats while empowering growth. -
3
Amazon Rekognition
Amazon
Amazon Rekognition simplifies the integration of image and video analysis into applications by utilizing reliable, highly scalable deep learning technology that doesn’t necessitate any machine learning knowledge from users. This powerful tool allows for the identification of various elements such as objects, individuals, text, scenes, and activities within images and videos, alongside the capability to flag inappropriate content. Moreover, Amazon Rekognition excels in delivering precise facial analysis and search functions, which can be employed for diverse applications including user authentication, crowd monitoring, and enhancing public safety. Additionally, with the feature known as Amazon Rekognition Custom Labels, businesses can pinpoint specific objects and scenes in images tailored to their operational requirements. For instance, one could create a model designed to recognize particular machine components on a production line or to monitor the health of plants. The beauty of Amazon Rekognition Custom Labels lies in its ability to handle the complexities of model development, ensuring that users need not possess any background in machine learning to effectively utilize this technology. This makes it an accessible tool for a wide range of industries looking to harness the power of image analysis without the steep learning curve typically associated with machine learning. -
4
Google Cloud Vision AI
Google
Harness the power of AutoML Vision or leverage pre-trained Vision API models to extract meaningful insights from images stored in the cloud or at the network's edge, allowing for emotion detection, text interpretation, and much more. Google Cloud presents two advanced computer vision solutions that utilize machine learning to provide top-notch prediction accuracy for image analysis. You can streamline the creation of bespoke machine learning models by simply uploading your images, using AutoML Vision's intuitive graphical interface to train these models, and fine-tuning them for optimal performance in terms of accuracy, latency, and size. Once perfected, these models can be seamlessly exported for use in cloud applications or on various edge devices. Additionally, Google Cloud’s Vision API grants access to robust pre-trained machine learning models via REST and RPC APIs. You can easily assign labels to images, categorize them into millions of pre-existing classifications, identify objects and faces, interpret both printed and handwritten text, and enhance your image catalog with rich metadata for deeper insights. This combination of tools not only simplifies the image analysis process but also empowers businesses to make data-driven decisions more effectively. -
5
Tangent Works
Tangent Works
€3.20 per monthUnlock business potential through the use of predictive analytics, enabling you to make data-driven decisions and enhance operational processes. With the ability to create predictive models in mere seconds, you can achieve quicker and more accurate forecasting and anomaly detection. TIM InstantML serves as a hyper-automated, advanced machine learning tool designed specifically for time series data, facilitating improved forecasting, anomaly detection, and classification. This solution empowers you to unlock the value embedded in your data, allowing you to harness the capabilities of predictive analytics effectively. It features high-quality automatic feature engineering while concurrently fine-tuning model structures and parameters to optimize performance. TIM also provides versatile deployment options and seamless integration with numerous popular platforms. For those who prefer a user-friendly graphical interface, TIM Studio caters to this need, making the experience efficient and straightforward. Embrace a truly data-driven approach with the robust capabilities of automated predictive analytics, and discover the insights hidden within your data with greater speed and ease. Experience the transformation of your business operations as you leverage these insights to drive strategic initiatives. -
6
PowerAI
Buzz Solutions
Experience a powerful software platform equipped with REST APIs, advanced analytics, and work prioritization designed to enhance the efficiency and precision of energy infrastructure inspections through cutting-edge AI technology. By optimizing your inspection processes, you achieve unmatched accuracy. PowerAI revolutionizes inspections, making them safer, more cost-effective, and more collaborative than previously possible. Step into the future with AI-driven visual data processing that ensures the safety of your personnel, assets, and community. Our innovative AI-based anomaly detection sets a new standard for accuracy and reliability in power infrastructure inspections, utilizing the foremost visual data processing techniques available today. This remarkable precision can result in substantial cost reductions ranging from 50-70% on data processing and visual anomaly identifications, along with impressive time savings of 50-60%. We pride ourselves on providing unmatched accuracy in detecting 27 distinct assets and their anomalies, thereby offering a robust solution that enhances operational efficiency. Our machine learning-powered technology continues to redefine the benchmarks for accuracy and consistency in the realm of power infrastructure inspections. -
7
Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
-
8
SparkPredict
SparkCognition
SparkPredict, the innovative analytics software from SparkCognition, is transforming maintenance practices by significantly reducing downtime and generating substantial savings in operational costs. This comprehensive solution processes sensor data and leverages machine learning to provide actionable insights, allowing for the identification of inefficient operations and the prediction of potential failures before they manifest. By integrating predictive AI analytics into your operations, you can safeguard your assets and ensure they remain operational. Moreover, it enhances labor productivity during downtimes by offering insights that guide necessary repairs. The use of machine learning also helps preserve the invaluable knowledge of your workforce by encapsulating their expertise. Not only can you anticipate machine issues with less effort, but you can also broaden the scope of asset failure predictions. Additionally, the system enables prompt and informed repair decisions through clear indicators of potential failures. To ensure ongoing predictive accuracy, it incorporates automatic model retraining, consistently refining its models to adapt and improve over time. Overall, SparkPredict offers a comprehensive approach to maintenance that balances efficiency and reliability. -
9
Fountain9 Kronoscope
Fountain9
Stay ahead of your customers’ fluctuating preferences by leveraging precise demand forecasts and stock-out predictions. Our AI-driven platform, Kronoscope, continuously monitors shifts in demand patterns, enabling you to respond rapidly and avoid excess inventory while ensuring that your customers always find what they need. Utilizing a combination of advanced machine learning and deep learning algorithms, Kronoscope automatically creates a tailored model for each SKU across all stores, warehouses, or channels. Our unique algorithms uncover various patterns, such as seasonality, cannibalization, and substitution effects, enhancing the accuracy of our predictions. There is no need for manual adjustments, as the models autonomously retrain to accommodate emerging demand patterns, identify anomalies, and minimize historical fluctuations. Additionally, Kronoscope delivers natural language insights regarding unusual occurrences, key influences on demand changes, and high-impact items, among other valuable information. Furthermore, you can enhance your demand forecasts by modeling the effects of promotions, marketing initiatives, and various other business elements on customer demand. This comprehensive approach ensures that your inventory strategies remain aligned with the latest market trends. -
10
Automaton AI
Automaton AI
Utilizing Automaton AI's ADVIT platform, you can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all from a single interface. The system automatically optimizes data for each stage of the computer vision pipeline, allowing for a streamlined approach to data labeling processes and in-house data pipelines. You can efficiently handle both structured and unstructured datasets—be it video, images, or text—while employing automatic functions that prepare your data for every phase of the deep learning workflow. Once the data is accurately labeled and undergoes quality assurance, you can proceed with training your own model effectively. Deep neural network training requires careful hyperparameter tuning, including adjustments to batch size and learning rates, which are essential for maximizing model performance. Additionally, you can optimize and apply transfer learning to enhance the accuracy of your trained models. After the training phase, the model can be deployed into production seamlessly. ADVIT also supports model versioning, ensuring that model development and accuracy metrics are tracked in real-time. By leveraging a pre-trained DNN model for automatic labeling, you can further improve the overall accuracy of your models, paving the way for more robust applications in the future. This comprehensive approach to data and model management significantly enhances the efficiency of machine learning projects. -
11
Safeguard business service-level agreements by utilizing dashboards that enable monitoring of service health, troubleshooting alerts, and conducting root cause analyses. Enhance mean time to resolution (MTTR) through real-time event correlation, automated incident prioritization, and seamless integrations with IT service management (ITSM) and orchestration tools. Leverage advanced analytics, including anomaly detection, adaptive thresholding, and predictive health scoring, to keep an eye on key performance indicators (KPIs) and proactively avert potential issues up to 30 minutes ahead of time. Track performance in alignment with business operations through ready-made dashboards that not only display service health but also visually link services to their underlying infrastructure. Employ side-by-side comparisons of various services while correlating metrics over time to uncover root causes effectively. Utilize machine learning algorithms alongside historical service health scores to forecast future incidents accurately. Implement adaptive thresholding and anomaly detection techniques that automatically refine rules based on previously observed behaviors, ensuring that your alerts remain relevant and timely. This continuous monitoring and adjustment of thresholds can significantly enhance operational efficiency.
-
12
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
13
VictoriaMetrics Anomaly Detection
VictoriaMetrics
VictoriaMetrics Anomaly Detection, a service which continuously scans data stored in VictoriaMetrics to detect unexpected changes in real-time, is a service for detecting anomalies in data patterns. It does this by using user-configurable models of machine learning. VictoriaMetrics Anomaly Detection is a key tool in the dynamic and complex world system monitoring. It is part of our Enterprise offering. It empowers SREs, DevOps and other teams by automating the complex task of identifying anomalous behavior in time series data. It goes beyond threshold-based alerting by utilizing machine learning to detect anomalies, minimize false positives and reduce alert fatigue. The use of unified anomaly scores and simplified alerting mechanisms allows teams to identify and address potential issues quicker, ensuring system reliability. -
14
Abacus.AI
Abacus.AI
Abacus.AI stands out as the pioneering end-to-end autonomous AI platform, designed to facilitate real-time deep learning on a large scale tailored for typical enterprise applications. By utilizing our cutting-edge neural architecture search methods, you can create and deploy bespoke deep learning models seamlessly on our comprehensive DLOps platform. Our advanced AI engine is proven to boost user engagement by a minimum of 30% through highly personalized recommendations. These recommendations cater specifically to individual user preferences, resulting in enhanced interaction and higher conversion rates. Say goodbye to the complexities of data management, as we automate the creation of your data pipelines and the retraining of your models. Furthermore, our approach employs generative modeling to deliver recommendations, ensuring that even with minimal data about a specific user or item, you can avoid the cold start problem. With Abacus.AI, you can focus on growth and innovation while we handle the intricacies behind the scenes. -
15
Google Cloud AutoML
Google
Cloud AutoML represents a collection of machine learning tools that allow developers with minimal expertise in the field to create tailored models that meet their specific business requirements. This technology harnesses Google's advanced transfer learning and neural architecture search methodologies. By utilizing over a decade of exclusive research advancements from Google, Cloud AutoML enables your machine learning models to achieve enhanced accuracy and quicker performance. With its user-friendly graphical interface, you can effortlessly train, assess, refine, and launch models using your own data. In just a few minutes, you can develop a personalized machine learning model. Additionally, Google’s human labeling service offers a dedicated team to assist in annotating or refining your data labels, ensuring that your models are trained on top-notch data for optimal results. This combination of advanced technology and user support makes Cloud AutoML an accessible option for businesses looking to leverage machine learning. -
16
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
17
Azure Open Datasets
Microsoft
Enhance the precision of your machine learning models by leveraging publicly accessible datasets. Streamline the process of data discovery and preparation with curated datasets that are not only readily available for machine learning applications but also easily integrable through Azure services. It is essential to consider real-world factors that could influence business performance. By integrating features from these curated datasets into your machine learning models, you can significantly boost the accuracy of your predictions while minimizing the time spent on data preparation. Collaborate and share datasets with an expanding network of data scientists and developers. Utilize Azure Open Datasets alongside Azure’s machine learning and data analytics solutions to generate insights at an unprecedented scale. Most Open Datasets come at no extra cost, allowing you to pay solely for the Azure services utilized, including virtual machine instances, storage, networking, and machine learning resources. This curated open data is designed for seamless access on Azure, empowering users to focus on innovation and analysis. In this way, organizations can unlock new opportunities and drive informed decision-making. -
18
Deepbody Analytica
Deepbody Analytica
We collect and examine information from various sources, including socioeconomic factors, electronic health records, and biological samples such as breath, blood, saliva, stool, urine, DNA, sweat, hair, and vital signs. This health information holds numerous insights about your well-being. Thanks to recent developments in artificial intelligence, machine learning, and powerful computing capabilities, we can integrate data from different origins, giving your physician a thorough understanding of your health risk factors. Our models undergo continuous retraining using anonymized health information securely linked to our database. Utilizing large data sets enhances the precision of our data models, significantly improving AI's ability to identify health risks earlier than conventional approaches, which could be life-saving. While most physicians focus primarily on diagnosing existing conditions, our machine-learning models emphasize prevention and risk evaluation, ensuring a proactive approach to healthcare. This shift in focus allows us to address potential health issues before they develop into more serious concerns. -
19
Neuri
Neuri
We engage in pioneering research on artificial intelligence to attain significant advantages in financial investment, shedding light on the market through innovative neuro-prediction techniques. Our approach integrates advanced deep reinforcement learning algorithms and graph-based learning with artificial neural networks to effectively model and forecast time series data. At Neuri, we focus on generating synthetic data that accurately reflects global financial markets, subjecting it to intricate simulations of trading behaviors. We are optimistic about the potential of quantum optimization to enhance our simulations beyond the capabilities of classical supercomputing technologies. Given that financial markets are constantly changing, we develop AI algorithms that adapt and learn in real-time, allowing us to discover relationships between various financial assets, classes, and markets. The intersection of neuroscience-inspired models, quantum algorithms, and machine learning in systematic trading remains a largely untapped area, presenting an exciting opportunity for future exploration and development. By pushing the boundaries of current methodologies, we aim to redefine how trading strategies are formulated and executed in this ever-evolving landscape. -
20
Oracle Machine Learning
Oracle
Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization. -
21
Mona
Mona
Mona is a flexible and intelligent monitoring platform for AI / ML. Data science teams leverage Mona’s powerful analytical engine to gain granular insights about the behavior of their data and models, and detect issues within specific segments of data, in order to reduce business risk and pinpoint areas that need improvements. Mona enables tracking custom metrics for any AI use case within any industry and easily integrates with existing tech stacks. In 2018, we ventured on a mission to empower data teams to make AI more impactful and reliable, and to raise the collective confidence of business and technology leaders in their ability to make the most out of AI. We have built the leading intelligent monitoring platform to provide data and AI teams with continuous insights to help them reduce risks, optimize their operations, and ultimately build more valuable AI systems. Enterprises in a variety of industries leverage Mona for NLP/NLU, speech, computer vision, and machine learning use cases. Mona was founded by experienced product leaders from Google and McKinsey&Co, is backed by top VCs, and is HQ in Atlanta, Georgia. In 2021, Mona was recognized by Gartner as a Cool Vendor in AI Operationalization and Engineering. -
22
Strong Analytics
Strong Analytics
Our platforms offer a reliable basis for creating, developing, and implementing tailored machine learning and artificial intelligence solutions. You can create next-best-action applications that utilize reinforcement-learning algorithms to learn, adapt, and optimize over time. Additionally, we provide custom deep learning vision models that evolve continuously to address your specific challenges. Leverage cutting-edge forecasting techniques to anticipate future trends effectively. With cloud-based tools, you can facilitate more intelligent decision-making across your organization by monitoring and analyzing data seamlessly. Transitioning from experimental machine learning applications to stable, scalable platforms remains a significant hurdle for seasoned data science and engineering teams. Strong ML addresses this issue by providing a comprehensive set of tools designed to streamline the management, deployment, and monitoring of your machine learning applications, ultimately enhancing efficiency and performance. This ensures that your organization can stay ahead in the rapidly evolving landscape of technology and innovation. -
23
Azure AI Anomaly Detector
Microsoft
Anticipate issues before they arise by utilizing an Azure AI anomaly detection service. This service allows for the seamless integration of time-series anomaly detection features into applications, enabling users to quickly pinpoint problems. The AI Anomaly Detector processes various types of time-series data and intelligently chooses the most effective anomaly detection algorithm tailored to your specific dataset, ensuring superior accuracy. It can identify sudden spikes, drops, deviations from established patterns, and changes in trends using both univariate and multivariate APIs. Users can personalize the service to recognize different levels of anomalies based on their needs. The anomaly detection service can be deployed flexibly, whether in the cloud or at the intelligent edge. With a robust inference engine, the service evaluates your time-series dataset and automatically determines the ideal detection algorithm, enhancing accuracy for your unique context. This automatic detection process removes the necessity for labeled training data, enabling you to save valuable time and concentrate on addressing issues promptly as they arise. By leveraging advanced technology, organizations can enhance their operational efficiency and maintain a proactive approach to problem-solving. -
24
Sensai
Sensai
Sensai offers a cutting-edge AI-driven platform for detecting anomalies, performing root cause analysis, and forecasting issues, which allows for immediate problem resolution. The Sensai AI solution greatly enhances system uptime and accelerates the identification of root causes. By equipping IT leaders with the tools to effectively manage service level agreements (SLAs), it boosts both performance and profitability. Additionally, it automates and simplifies the processes of anomaly detection, prediction, root cause analysis, and resolution. With its comprehensive perspective and integrated analytics, Sensai seamlessly connects with third-party tools. Users benefit from pre-trained algorithms and models available from the outset, ensuring a swift and efficient implementation. This holistic approach helps organizations maintain operational efficiency while proactively addressing potential disruptions. -
25
Metaplane
Metaplane
$825 per monthIn 30 minutes, you can monitor your entire warehouse. Automated warehouse-to-BI lineage can identify downstream impacts. Trust can be lost in seconds and regained in months. With modern data-era observability, you can have peace of mind. It can be difficult to get the coverage you need with code-based tests. They take hours to create and maintain. Metaplane allows you to add hundreds of tests in minutes. Foundational tests (e.g. We support foundational tests (e.g. row counts, freshness and schema drift), more complicated tests (distribution shifts, nullness shiftings, enum modifications), custom SQL, as well as everything in between. Manual thresholds can take a while to set and quickly become outdated as your data changes. Our anomaly detection algorithms use historical metadata to detect outliers. To minimize alert fatigue, monitor what is important, while also taking into account seasonality, trends and feedback from your team. You can also override manual thresholds. -
26
Arkestro
Arkestro
Experience effortless sourcing with no need for logins or apps, as our one-click events seamlessly land in your suppliers' inboxes, enriched with real-time predictive insights. Our adaptable data framework caters to all categories of expenditure, allowing you to source anything you could manage in Excel with ease using Arkestro. With predictive anomaly detection, potential mistakes are identified and corrected before they impact procurement processes. The role-based access feature streamlines project management for sourcing events, ensuring all stakeholders receive timely updates. Arkestro enhances sourcing cycles by learning from supplier behavior, which helps to reduce the time required for these processes. A straightforward email-based workflow offers a range of award scenarios tailored to your sourcing events, regardless of their size or complexity. Supplier quotes often contain errors stemming from manual data entry and copy-pasting, which can complicate the sourcing process. Monitoring the progress of sourcing activities typically involves numerous pivot tables, making the task cumbersome. Additionally, new sourcing cycles often fail to incorporate insights from supplier quotes submitted in prior cycles. To aid in this, our pricing simulator provides immediate recommendations for suppliers to adjust and resubmit their proposals, making the process even more efficient. Ultimately, Arkestro transforms the sourcing landscape by minimizing errors and maximizing efficiency through intelligent data utilization. -
27
OpenVINO
Intel
FreeThe Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development. -
28
Core ML
Apple
Core ML utilizes a machine learning algorithm applied to a specific dataset to generate a predictive model. This model enables predictions based on incoming data, providing solutions for tasks that would be challenging or impossible to code manually. For instance, you could develop a model to classify images or identify particular objects within those images directly from their pixel data. Following the model's creation, it is essential to incorporate it into your application and enable deployment on users' devices. Your application leverages Core ML APIs along with user data to facilitate predictions and to refine or retrain the model as necessary. You can utilize the Create ML application that comes with Xcode to build and train your model. Models generated through Create ML are formatted for Core ML and can be seamlessly integrated into your app. Alternatively, a variety of other machine learning libraries can be employed, and you can use Core ML Tools to convert those models into the Core ML format. Once the model is installed on a user’s device, Core ML allows for on-device retraining or fine-tuning, enhancing its accuracy and performance. This flexibility enables continuous improvement of the model based on real-world usage and feedback. -
29
Altair Knowledge Studio
Altair
Altair is utilized by data scientists and business analysts to extract actionable insights from their datasets. Knowledge Studio offers a leading, user-friendly machine learning and predictive analytics platform that swiftly visualizes data while providing clear, explainable outcomes without necessitating any coding. As a prominent figure in analytics, Knowledge Studio enhances transparency and automates machine learning processes through features like AutoML and explainable AI, all while allowing users the flexibility to configure and fine-tune their models, thus maintaining control over the building process. The platform fosters collaboration throughout the organization, enabling data professionals to tackle intricate projects in a matter of minutes or hours rather than dragging them out for weeks or months. The results produced are straightforward and easily articulated, allowing stakeholders to grasp the findings effortlessly. Furthermore, the combination of user-friendliness and the automation of various modeling steps empowers data scientists to create an increased number of machine learning models more swiftly than with traditional coding methods or other available tools. This efficiency not only shortens project timelines but also enhances overall productivity across teams. -
30
Deci
Deci AI
Effortlessly create, refine, and deploy high-performing, precise models using Deci’s deep learning development platform, which utilizes Neural Architecture Search. Achieve superior accuracy and runtime performance that surpass state-of-the-art models for any application and inference hardware in no time. Accelerate your path to production with automated tools, eliminating the need for endless iterations and a multitude of libraries. This platform empowers new applications on devices with limited resources or helps reduce cloud computing expenses by up to 80%. With Deci’s NAS-driven AutoNAC engine, you can automatically discover architectures that are both accurate and efficient, specifically tailored to your application, hardware, and performance goals. Additionally, streamline the process of compiling and quantizing your models with cutting-edge compilers while quickly assessing various production configurations. This innovative approach not only enhances productivity but also ensures that your models are optimized for any deployment scenario. -
31
IntelliHub
Spotflock
We collaborate closely with enterprises to identify the prevalent challenges that hinder organizations from achieving their desired outcomes. Our designs aim to unlock possibilities that traditional methods have rendered impractical. Both large and small corporations need an AI platform that provides full empowerment and ownership. It is crucial to address data privacy while implementing AI solutions in a cost-effective manner. By improving operational efficiency, we enhance human work rather than replace it. Our application of AI allows for the automation of repetitive or hazardous tasks, minimizing the need for human involvement and accelerating processes with creativity and empathy. Machine Learning equips applications with seamless predictive capabilities, enabling the construction of classification and regression models. Additionally, it offers functionalities for clustering and visualizing different groupings. Supporting an array of ML libraries such as Weka, Scikit-Learn, H2O, and Tensorflow, it encompasses approximately 22 distinct algorithms tailored for developing classification, regression, and clustering models. This versatility ensures that businesses can adapt and thrive in a rapidly evolving technological landscape. -
32
Lightly intelligently identifies the most impactful subset of your data, enhancing model accuracy through iterative improvements by leveraging the finest data for retraining. By minimizing data redundancy and bias while concentrating on edge cases, you can maximize the efficiency of your data. Lightly's algorithms can efficiently handle substantial datasets in under 24 hours. Easily connect Lightly to your existing cloud storage solutions to automate the processing of new data seamlessly. With our API, you can fully automate the data selection workflow. Experience cutting-edge active learning algorithms that combine both active and self-supervised techniques for optimal data selection. By utilizing a blend of model predictions, embeddings, and relevant metadata, you can achieve your ideal data distribution. Gain deeper insights into your data distribution, biases, and edge cases to further refine your model. Additionally, you can manage data curation efforts while monitoring new data for labeling and subsequent model training. Installation is straightforward through a Docker image, and thanks to cloud storage integration, your data remains secure within your infrastructure, ensuring privacy and control. This approach allows for a holistic view of data management, making it easier to adapt to evolving modeling needs.
-
33
DATAGYM
eForce21
$19.00/month/ user DATAGYM empowers data scientists and machine learning professionals to annotate images at speeds that are ten times quicker than traditional methods. The use of AI-driven annotation tools minimizes the manual effort required, allowing for more time to refine machine learning models and enhancing the speed at which new products are launched. By streamlining data preparation, you can significantly boost the efficiency of your computer vision initiatives, reducing the time required by as much as half. This not only accelerates project timelines but also facilitates a more agile approach to innovation in the field. -
34
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a secure and curated collection of frameworks, tools, and dependencies to enhance deep learning capabilities in cloud environments. Designed for both Amazon Linux and Ubuntu, these Amazon Machine Images (AMIs) are pre-equipped with popular frameworks like TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, enabling quick deployment and efficient operation of these tools at scale. By utilizing these resources, you can create sophisticated machine learning models for the development of autonomous vehicle (AV) technology, thoroughly validating your models with millions of virtual tests. The setup and configuration process for AWS instances is expedited, facilitating faster experimentation and assessment through access to the latest frameworks and libraries, including Hugging Face Transformers. Furthermore, the incorporation of advanced analytics, machine learning, and deep learning techniques allows for the discovery of trends and the generation of predictions from scattered and raw health data, ultimately leading to more informed decision-making. This comprehensive ecosystem not only fosters innovation but also enhances operational efficiency across various applications. -
35
NEMESIS
Aviana
NEMESIS is an advanced AI-driven technology for anomaly detection that specializes in identifying fraud and inefficiencies. This next-generation platform not only highlights opportunities for improved efficiency within your business management systems, but it also serves as a customizable enterprise solution that allows business analysts to quickly convert data into meaningful insights. By harnessing the capabilities of artificial intelligence, NEMESIS addresses challenges including overstaffing, medical inaccuracies, care quality, and fraudulent claims. With its continuous process monitoring, NEMESIS reveals various risks, from anticipating quality concerns to uncovering waste and misuse. Utilizing machine learning and AI, it effectively identifies fraudulent activities and schemes before they can impact your financial resources. Furthermore, NEMESIS enhances your ability to manage expenses and track budget discrepancies, ensuring ongoing transparency regarding waste and abuse. This comprehensive approach not only improves operational efficiency but also fosters a more accountable financial environment within your organization. -
36
TruEra
TruEra
An advanced machine learning monitoring system is designed to simplify the oversight and troubleshooting of numerous models. With unmatched explainability accuracy and exclusive analytical capabilities, data scientists can effectively navigate challenges without encountering false alarms or dead ends, enabling them to swiftly tackle critical issues. This ensures that your machine learning models remain fine-tuned, ultimately optimizing your business performance. TruEra's solution is powered by a state-of-the-art explainability engine that has been honed through years of meticulous research and development, showcasing a level of accuracy that surpasses contemporary tools. The enterprise-grade AI explainability technology offered by TruEra stands out in the industry. The foundation of the diagnostic engine is rooted in six years of research at Carnegie Mellon University, resulting in performance that significantly exceeds that of its rivals. The platform's ability to conduct complex sensitivity analyses efficiently allows data scientists as well as business and compliance teams to gain a clear understanding of how and why models generate their predictions, fostering better decision-making processes. Additionally, this robust system not only enhances model performance but also promotes greater trust and transparency in AI-driven outcomes. -
37
Quindar
Quindar
Oversee, regulate, and automate the operations of spacecraft efficiently. Manage a variety of missions, an assortment of satellites, and different payloads through a cohesive interface. Control various satellite models within a single platform, enabling the smooth transition from older fleets to support for next-generation payloads. Utilize Quindar Mission Management to monitor spacecraft, secure communication slots, automate task assignments, and respond intelligently to incidents both on the ground and in space. Leverage cutting-edge analytics and machine learning capabilities to transform raw data into strategic insights. Accelerate decision-making processes through predictive maintenance, trend evaluation, and anomaly detection. By harnessing data-driven insights, you can advance your mission effectively. This solution is designed for seamless integration with your current systems and third-party tools. As your operational requirements change, your capabilities can adapt accordingly without being hindered by vendor limitations. Furthermore, conduct thorough analyses of flight trajectories and commands across the majority of command and control systems, ensuring comprehensive oversight and management of all spacecraft activities. -
38
Produvia
Produvia
$1,000 per monthProduvia offers a serverless machine learning development service that streamlines the creation and deployment of machine learning models through advanced cloud infrastructure. By collaborating with Produvia, businesses can leverage this cutting-edge technology to innovate and implement their machine learning strategies effectively. Renowned Fortune 500 companies and Global 500 enterprises turn to Produvia for assistance in building and launching machine learning models utilizing contemporary cloud solutions. At Produvia, we harness the latest advancements in machine learning and deep learning to address various business challenges. Many organizations find themselves spending excessively on infrastructure, prompting a shift toward serverless architectures that help mitigate server-related expenses. The complexity of outdated servers and legacy systems often hampers progress, which has led modern companies to adopt machine learning technologies aimed at transforming their technology frameworks. While many businesses typically hire software developers to create traditional code, innovative organizations are now employing machine learning to produce software capable of generating code autonomously. As the landscape of technology evolves, the shift to automated software development is becoming increasingly prevalent. -
39
Dioptra
Dioptra
$1,000 per monthSelect the most impactful unlabeled data to enhance domain coverage and boost model performance. Ensure your metadata is registered with Dioptra while retaining full control over your data. Identify the underlying causes of model failure and regressions through a comprehensive data-focused toolkit. Utilize our active learning miners to extract the most valuable unlabeled datasets. Leverage Dioptra’s APIs to seamlessly integrate with your labeling and retraining processes. Systematically curate your data at scale tailored to your specific use case. We offer open-source solutions for data curation and management applicable to computer vision, NLP, and LLMs. Our support has enabled clients to elevate model accuracy on challenging cases, accelerate training durations, and cut down on labeling expenses, ultimately leading to more efficient workflows. This approach not only streamlines the data management process but also fosters innovation in model development. -
40
Ray
Anyscale
FreeYou can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution. -
41
Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
-
42
NVIDIA DIGITS
NVIDIA DIGITS
The NVIDIA Deep Learning GPU Training System (DIGITS) empowers engineers and data scientists by making deep learning accessible and efficient. With DIGITS, users can swiftly train highly precise deep neural networks (DNNs) tailored for tasks like image classification, segmentation, and object detection. It streamlines essential deep learning processes, including data management, neural network design, multi-GPU training, real-time performance monitoring through advanced visualizations, and selecting optimal models for deployment from the results browser. The interactive nature of DIGITS allows data scientists to concentrate on model design and training instead of getting bogged down with programming and debugging. Users can train models interactively with TensorFlow while also visualizing the model architecture via TensorBoard. Furthermore, DIGITS supports the integration of custom plug-ins, facilitating the importation of specialized data formats such as DICOM, commonly utilized in medical imaging. This comprehensive approach ensures that engineers can maximize their productivity while leveraging advanced deep learning techniques. -
43
InsightFinder
InsightFinder
$2.5 per core per monthInsightFinder Unified Intelligence Engine platform (UIE) provides human-centered AI solutions to identify root causes of incidents and prevent them from happening. InsightFinder uses patented self-tuning, unsupervised machine learning to continuously learn from logs, traces and triage threads of DevOps Engineers and SREs to identify root causes and predict future incidents. Companies of all sizes have adopted the platform and found that they can predict business-impacting incidents hours ahead of time with clearly identified root causes. You can get a complete overview of your IT Ops environment, including trends and patterns as well as team activities. You can also view calculations that show overall downtime savings, cost-of-labor savings, and the number of incidents solved. -
44
Metacoder
Wazoo Mobile Technologies LLC
$89 per user/month Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data. -
45
Amazon EC2 P4 Instances
Amazon
$11.57 per hourAmazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness.