Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Monitor the performance of your models to identify and respond to data drift, enhancing accuracy for improved business results. Foster trust, ensure regulatory compliance, and promote actionable machine learning outcomes using Arthur’s APIs that prioritize explainability and transparency. Actively supervise for biases, evaluate model results against tailored bias metrics, and enhance your models' fairness. Understand how each model interacts with various demographic groups, detect biases early, and apply Arthur's unique bias reduction strategies. Arthur is capable of scaling to accommodate up to 1 million transactions per second, providing quick insights. Only authorized personnel can perform actions, ensuring data security. Different teams or departments can maintain separate environments with tailored access controls, and once data is ingested, it becomes immutable, safeguarding the integrity of metrics and insights. This level of control and monitoring not only improves model performance but also supports ethical AI practices.
Description
Traceloop is an all-encompassing observability platform tailored for the monitoring, debugging, and quality assessment of outputs generated by Large Language Models (LLMs). It features real-time notifications for any unexpected variations in output quality and provides execution tracing for each request, allowing for gradual implementation of changes to models and prompts. Developers can effectively troubleshoot and re-execute production issues directly within their Integrated Development Environment (IDE), streamlining the debugging process. The platform is designed to integrate smoothly with the OpenLLMetry SDK and supports a variety of programming languages, including Python, JavaScript/TypeScript, Go, and Ruby. To evaluate LLM outputs comprehensively, Traceloop offers an extensive array of metrics that encompass semantic, syntactic, safety, and structural dimensions. These metrics include QA relevance, faithfulness, overall text quality, grammatical accuracy, redundancy detection, focus evaluation, text length, word count, and the identification of sensitive information such as Personally Identifiable Information (PII), secrets, and toxic content. Additionally, it provides capabilities for validation through regex, SQL, and JSON schema, as well as code validation, ensuring a robust framework for the assessment of model performance. With such a diverse toolkit, Traceloop enhances the reliability and effectiveness of LLM outputs significantly.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
Go
JSON
JavaScript
LiteLLM
Microsoft Azure
Python
Ruby
SQL
TypeScript
Integrations
Amazon Web Services (AWS)
Go
JSON
JavaScript
LiteLLM
Microsoft Azure
Python
Ruby
SQL
TypeScript
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$59 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Arthur
Founded
2018
Country
United States
Website
arthur.ai/
Vendor Details
Company Name
Traceloop
Founded
2022
Country
Israel
Website
www.traceloop.com
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization