Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale.
It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation.
With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently.
Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL.
Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes.
Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management.
Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
Description
Timeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency.
API Access
Has API
API Access
Has API
Integrations
Amazon S3
Amazon Web Services (AWS)
Apache Avro
Apache Kafka
Apache Parquet
Apache Spark
Baidu Palo
ClickHouse
Google Cloud Platform
Google Sheets
Integrations
Amazon S3
Amazon Web Services (AWS)
Apache Avro
Apache Kafka
Apache Parquet
Apache Spark
Baidu Palo
ClickHouse
Google Cloud Platform
Google Sheets
Pricing Details
Free
Free Trial
Free Version
Pricing Details
$199 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
The Apache Software Foundation
Founded
1999
Country
United States
Website
doris.apache.org
Vendor Details
Company Name
Timeplus
Website
www.timeplus.com
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge