Best Apache Doris Alternatives in 2025

Find the top alternatives to Apache Doris currently available. Compare ratings, reviews, pricing, and features of Apache Doris alternatives in 2025. Slashdot lists the best Apache Doris alternatives on the market that offer competing products that are similar to Apache Doris. Sort through Apache Doris alternatives below to make the best choice for your needs

  • 1
    Teradata VantageCloud Reviews
    See Software
    Learn More
    Compare Both
    Teradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable.
  • 2
    Google Cloud BigQuery Reviews
    See Software
    Learn More
    Compare Both
    BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
  • 3
    Snowflake Reviews
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 4
    StarTree Reviews
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 5
    Databend Reviews
    Databend is an innovative, cloud-native data warehouse crafted to provide high-performance and cost-effective analytics for extensive data processing needs. Its architecture is elastic, allowing it to scale dynamically in response to varying workload demands, thus promoting efficient resource use and reducing operational expenses. Developed in Rust, Databend delivers outstanding performance through features such as vectorized query execution and columnar storage, which significantly enhance data retrieval and processing efficiency. The cloud-first architecture facilitates smooth integration with various cloud platforms while prioritizing reliability, data consistency, and fault tolerance. As an open-source solution, Databend presents a versatile and accessible option for data teams aiming to manage big data analytics effectively in cloud environments. Additionally, its continuous updates and community support ensure that users can take advantage of the latest advancements in data processing technology.
  • 6
    Amazon Redshift Reviews
    Amazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes.
  • 7
    SelectDB Reviews

    SelectDB

    SelectDB

    $0.22 per hour
    SelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data.
  • 8
    Oxla Reviews

    Oxla

    Oxla

    $50 per CPU core / monthly
    Designed specifically for optimizing compute, memory, and storage, Oxla serves as a self-hosted data warehouse that excels in handling large-scale, low-latency analytics while providing strong support for time-series data. While cloud data warehouses may suit many, they are not universally applicable; as operations expand, the ongoing costs of cloud computing can surpass initial savings on infrastructure, particularly in regulated sectors that demand comprehensive data control beyond mere VPC and BYOC setups. Oxla surpasses both traditional and cloud-based warehouses by maximizing efficiency, allowing for the scalability of expanding datasets with predictable expenses, whether on-premises or in various cloud environments. Deployment, execution, and maintenance of Oxla can be easily managed using Docker and YAML, enabling a range of workloads to thrive within a singular, self-hosted data warehouse. In this way, Oxla provides a tailored solution for organizations seeking both efficiency and control in their data management strategies.
  • 9
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 10
    VeloDB Reviews
    VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
  • 11
    Materialize Reviews

    Materialize

    Materialize

    $0.98 per hour
    Materialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks.
  • 12
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 13
    Kinetica Reviews
    A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale.
  • 14
    Apache Pinot Reviews
    Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues.
  • 15
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 16
    SingleStore Reviews
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 17
    CelerData Cloud Reviews
    CelerData is an advanced SQL engine designed to enable high-performance analytics directly on data lakehouses, removing the necessity for conventional data warehouse ingestion processes. It achieves impressive query speeds in mere seconds, facilitates on-the-fly JOIN operations without incurring expensive denormalization, and streamlines system architecture by enabling users to execute intensive workloads on open format tables. Based on the open-source StarRocks engine, this platform surpasses older query engines like Trino, ClickHouse, and Apache Druid in terms of latency, concurrency, and cost efficiency. With its cloud-managed service operating within your own VPC, users maintain control over their infrastructure and data ownership while CelerData manages the upkeep and optimization tasks. This platform is poised to support real-time OLAP, business intelligence, and customer-facing analytics applications, and it has garnered the trust of major enterprise clients, such as Pinterest, Coinbase, and Fanatics, who have realized significant improvements in latency and cost savings. Beyond enhancing performance, CelerData’s capabilities allow businesses to harness their data more effectively, ensuring they remain competitive in a data-driven landscape.
  • 18
    Imply Reviews
    Imply is a cutting-edge analytics platform that leverages Apache Druid to manage extensive, high-performance OLAP (Online Analytical Processing) tasks in real-time. It excels at ingesting data instantly, delivering rapid query results, and enabling intricate analytical inquiries across vast datasets while maintaining low latency. This platform is specifically designed for enterprises that require engaging analytics, real-time dashboards, and data-centric decision-making on a large scale. Users benefit from an intuitive interface for exploring data, enhanced by features like multi-tenancy, detailed access controls, and operational insights. Its distributed architecture and ability to scale make Imply particularly advantageous for applications in streaming data analysis, business intelligence, and real-time monitoring across various sectors. Furthermore, its capabilities ensure that organizations can efficiently adapt to increasing data demands and quickly derive actionable insights from their data.
  • 19
    Exasol Reviews
    An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success.
  • 20
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency.
  • 21
    Infobright DB Reviews
    Infobright DB is an enterprise-grade database that utilizes a columnar storage architecture, enabling business analysts to efficiently analyze data and rapidly generate reports. This versatile database can be implemented both on-premise and in cloud environments. It is designed to store and analyze substantial amounts of big data, facilitating interactive business intelligence and handling complex queries with ease. By enhancing query performance and lowering storage costs, it significantly boosts overall efficiency in analytics and reporting processes. With capabilities to manage hundreds of terabytes of data, Infobright DB overcomes the limitations often faced by traditional databases. This solution supports big data applications while removing the need for indexing and partitioning, resulting in no administrative burden. In an era where machine data is growing exponentially, IgniteTech’s Infobright DB is purpose-built to deliver exceptional performance for large quantities of machine-generated information. Furthermore, it allows users to manage intricate ad hoc analytical environments without the heavy database administration demands seen in other solutions. This makes it an invaluable tool for organizations seeking to optimize their data handling and analysis.
  • 22
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • 23
    Aerospike Reviews
    Aerospike is the global leader for next-generation, real time NoSQL data solutions at any scale. Aerospike helps enterprises overcome seemingly impossible data bottlenecks and compete with other companies at a fraction of the cost and complexity of legacy NoSQL databases. Aerospike's Hybrid Memory Architecture™ is a patented technology that unlocks the full potential of modern hardware and delivers previously unimaginable value. It does this by delivering unimaginable value from huge amounts of data at both the edge, core, and in the cloud. Aerospike empowers customers with the ability to instantly combat fraud, dramatically increase shopping cart sizes, deploy global digital payment networks, and provide instant, one-to-1 personalization for millions. Aerospike customers include Airtel and Banca d'Italia as well as Snap, Verizon Media, Wayfair, PayPal, Snap, Verizon Media, and Nielsen. The company's headquarters is in Mountain View, California. Additional locations are in London, Bengaluru, India, and Tel Aviv in Israel.
  • 24
    Apache Kylin Reviews

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights.
  • 25
    OpenText Analytics Database (Vertica) Reviews
    OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
  • 26
    BigLake Reviews
    BigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments.
  • 27
    Azure Synapse Analytics Reviews
    Azure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes.
  • 28
    Hydra Reviews
    Hydra is an innovative, open-source solution that transforms Postgres into a column-oriented database, enabling instant queries over billions of rows without necessitating any alterations to your existing code. By employing advanced techniques such as parallelization and vectorization for aggregate functions like COUNT, SUM, and AVG, Hydra significantly enhances the speed and efficiency of data processing in Postgres. In just five minutes, you can set up Hydra without modifying your syntax, tools, data model, or extensions, ensuring a hassle-free integration. For those seeking a fully managed experience, Hydra Cloud offers seamless operations and optimal performance. Various industries can benefit from tailored analytics by leveraging powerful Postgres extensions and custom functions, allowing you to take charge of your data needs. Designed with user requirements in mind, Hydra stands out as the fastest Postgres solution available for analytical tasks, making it an essential tool for data-driven decision-making. With features like columnar storage, query parallelization, and vectorization, Hydra is poised to redefine the analytics landscape.
  • 29
    Firebolt Reviews
    Firebolt offers incredible speed and flexibility to tackle even the most daunting data challenges. By completely reimagining the cloud data warehouse, Firebolt provides an exceptionally rapid and efficient analytics experience regardless of scale. This significant leap in performance enables you to process larger datasets with greater detail through remarkably swift queries. You can effortlessly adjust your resources to accommodate any workload, volume of data, and number of simultaneous users. At Firebolt, we are committed to making data warehouses far more user-friendly than what has traditionally been available. This commitment drives us to simplify processes that were once complex and time-consuming into manageable tasks. Unlike other cloud data warehouse providers that profit from the resources you utilize, our model prioritizes transparency and fairness. We offer a pricing structure that ensures you can expand your operations without incurring excessive costs, making our solution not only efficient but also economical. Ultimately, Firebolt empowers organizations to harness the full potential of their data without the usual headaches.
  • 30
    IBM Db2 Reviews
    IBM Db2 encompasses a suite of data management solutions, prominently featuring the Db2 relational database. These offerings incorporate AI-driven functionalities designed to streamline the management of both structured and unstructured data across various on-premises and multicloud settings. By simplifying data accessibility, the Db2 suite empowers businesses to leverage the advantages of AI effectively. Most components of the Db2 family are integrated within the IBM Cloud Pak® for Data platform, available either as additional features or as built-in data source services, ensuring that nearly all data is accessible across hybrid or multicloud frameworks to support AI-driven applications. You can easily unify your transactional data repositories and swiftly extract insights through intelligent, universal querying across diverse data sources. The multimodel functionality helps reduce expenses by removing the necessity for data replication and migration. Additionally, Db2 offers enhanced flexibility, allowing for deployment on any cloud service provider, which further optimizes operational agility and responsiveness. This versatility in deployment options ensures that businesses can adapt their data management strategies as their needs evolve.
  • 31
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • 32
    Presto Reviews
    Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape.
  • 33
    QuestDB Reviews
    QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively.
  • 34
    Tiger Data Reviews

    Tiger Data

    Tiger Data

    $30 per month
    Tiger Data reimagines PostgreSQL for the modern era — powering everything from IoT and fintech to AI and Web3. As the creator of TimescaleDB, it brings native time-series, event, and analytical capabilities to the world’s most trusted database engine. Through Tiger Cloud, developers gain access to a fully managed, elastic infrastructure with auto-scaling, high availability, and point-in-time recovery. The platform introduces core innovations like Forks (copy-on-write storage branches for CI/CD and testing), Memory (durable agent context and recall), and Search (hybrid BM25 and vector retrieval). Combined with hypertables, continuous aggregates, and materialized views, Tiger delivers the speed of specialized analytical systems without sacrificing SQL simplicity. Teams use Tiger Data to unify real-time and historical analytics, build AI-driven workflows, and streamline data management at scale. It integrates seamlessly with the entire PostgreSQL ecosystem, supporting APIs, CLIs, and modern development frameworks. With over 20,000 GitHub stars and a thriving developer community, Tiger Data stands as the evolution of PostgreSQL for the intelligent data age.
  • 35
    Cloudera Data Warehouse Reviews
    Cloudera Data Warehouse is a cloud-native, self-service analytics platform designed to empower IT departments to quickly provide query functionalities to BI analysts, allowing users to transition from no query capabilities to active querying within minutes. It accommodates all forms of data, including structured, semi-structured, unstructured, real-time, and batch data, and it scales efficiently from gigabytes to petabytes based on demand. This solution is seamlessly integrated with various services, including streaming, data engineering, and AI, while maintaining a cohesive framework for security, governance, and metadata across private, public, or hybrid cloud environments. Each virtual warehouse, whether a data warehouse or mart, is autonomously configured and optimized, ensuring that different workloads remain independent and do not disrupt one another. Cloudera utilizes a range of open-source engines, such as Hive, Impala, Kudu, and Druid, along with tools like Hue, to facilitate diverse analytical tasks, which span from creating dashboards and conducting operational analytics to engaging in research and exploration of extensive event or time-series data. This comprehensive approach not only enhances data accessibility but also significantly improves the efficiency of data analysis across various sectors.
  • 36
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 37
    DeltaStream Reviews
    DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored.
  • 38
    DoubleCloud Reviews

    DoubleCloud

    DoubleCloud

    $0.024 per 1 GB per month
    Optimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry.
  • 39
    Trino Reviews
    Trino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape.
  • 40
    Google Cloud Datastream Reviews
    A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights.
  • 41
    R2 SQL Reviews
    R2 SQL is a serverless analytics query engine developed by Cloudflare, currently in its open beta phase, that allows users to execute SQL queries on Apache Iceberg tables stored within the R2 Data Catalog without the hassle of managing compute clusters. It is designed to handle vast amounts of data efficiently, utilizing techniques such as metadata pruning, partition-level statistics, and filtering at both the file and row-group levels, all while taking advantage of Cloudflare’s globally distributed compute resources to enhance parallel execution. The system operates by integrating seamlessly with R2 object storage and an Iceberg catalog layer, allowing for data ingestion via Cloudflare Pipelines into Iceberg tables, which can then be queried with ease and minimal overhead. Users can submit queries through the Wrangler CLI or an HTTP API, with access controlled by an API token that provides permissions across R2 SQL, Data Catalog, and storage. Notably, during the open beta period, there are no charges for using R2 SQL itself; costs are only incurred for storage and standard operations within R2. This approach greatly simplifies the analytics process for users, making it more accessible and efficient.
  • 42
    BigObject Reviews
    At the core of our innovative approach lies in-data computing, a cutting-edge technology aimed at efficiently processing substantial volumes of data. Our leading product, BigObject, is a prime example of this technology; it is a time series database purposefully created to enable rapid storage and management of vast data sets. Leveraging in-data computing, BigObject has the capability to swiftly and continuously address diverse data streams without interruption. This time series database excels in both high-speed storage and data analysis, showcasing remarkable performance alongside robust complex query functionalities. By transitioning from a traditional relational data structure to a time-series model, it harnesses in-data computing to enhance overall database efficiency. The foundation of our technology is an abstract model, wherein all data resides within an infinite and persistent memory space, facilitating seamless storage and computation. This unique architecture not only optimizes performance but also paves the way for future advancements in data processing capabilities.
  • 43
    Decodable Reviews

    Decodable

    Decodable

    $0.20 per task per hour
    Say goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis.
  • 44
    Apache Flume Reviews

    Apache Flume

    Apache Software Foundation

    Flume is a dependable and distributed service designed to efficiently gather, aggregate, and transport significant volumes of log data. Its architecture is straightforward and adaptable, centered on streaming data flows, which enhances its usability. The system is built to withstand faults and includes various mechanisms for recovery and adjustable reliability features. Additionally, it employs a simple yet extensible data model that supports online analytic applications effectively. The Apache Flume team is excited to announce the launch of Flume version 1.8.0, which continues to enhance its capabilities. This version further solidifies Flume's role as a reliable tool for managing large-scale streaming event data efficiently.
  • 45
    Citus Reviews

    Citus

    Citus Data

    $0.27 per hour
    Citus enhances the beloved Postgres experience by integrating the capability of distributed tables, while remaining fully open source. It now supports both schema-based and row-based sharding, alongside compatibility with Postgres 16. You can scale Postgres effectively by distributing both data and queries, starting with a single Citus node and seamlessly adding more nodes and rebalancing shards as your needs expand. By utilizing parallelism, maintaining a larger dataset in memory, increasing I/O bandwidth, and employing columnar compression, you can significantly accelerate query performance by up to 300 times or even higher. As an extension rather than a fork, Citus works with the latest versions of Postgres, allowing you to utilize your existing SQL tools and build on your Postgres knowledge. Additionally, you can alleviate infrastructure challenges by managing both transactional and analytical tasks within a single database system. Citus is available for free download as open source, giving you the option to self-manage it while actively contributing to its development through GitHub. Shift your focus from database concerns to application development by running your applications on Citus within the Azure Cosmos DB for PostgreSQL environment, making your workflow more efficient.