Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale.
It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation.
With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently.
Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL.
Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes.
Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management.
Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
Description
IBM Analytics Engine offers a unique architecture for Hadoop clusters by separating the compute and storage components. Rather than relying on a fixed cluster with nodes that serve both purposes, this engine enables users to utilize an object storage layer, such as IBM Cloud Object Storage, and to dynamically create computing clusters as needed. This decoupling enhances the flexibility, scalability, and ease of maintenance of big data analytics platforms. Built on a stack that complies with ODPi and equipped with cutting-edge data science tools, it integrates seamlessly with the larger Apache Hadoop and Apache Spark ecosystems. Users can define clusters tailored to their specific application needs, selecting the suitable software package, version, and cluster size. They have the option to utilize the clusters for as long as necessary and terminate them immediately after job completion. Additionally, users can configure these clusters with third-party analytics libraries and packages, and leverage IBM Cloud services, including machine learning, to deploy their workloads effectively. This approach allows for a more responsive and efficient handling of data processing tasks.
API Access
Has API
API Access
Has API
Integrations
Apache Spark
Acquia CDP
Apache Flink
Apache Hive
Apache Hudi
Baidu Palo
Galileo
Hadoop
IBM Cloud Object Storage
MINT
Integrations
Apache Spark
Acquia CDP
Apache Flink
Apache Hive
Apache Hudi
Baidu Palo
Galileo
Hadoop
IBM Cloud Object Storage
MINT
Pricing Details
Free
Free Trial
Free Version
Pricing Details
$0.014 per hour
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
The Apache Software Foundation
Founded
1999
Country
United States
Website
doris.apache.org
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/cloud/analytics-engine
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Product Features
Data Discovery
Contextual Search
Data Classification
Data Matching
False Positives Reduction
Self Service Data Preparation
Sensitive Data Identification
Visual Analytics
Data Visualization
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery