Best Streaming Analytics Platforms for Kubernetes

Find and compare the best Streaming Analytics platforms for Kubernetes in 2025

Use the comparison tool below to compare the top Streaming Analytics platforms for Kubernetes on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Kapacitor Reviews

    Kapacitor

    InfluxData

    $0.002 per GB per hour
    Kapacitor serves as a dedicated data processing engine for InfluxDB 1.x and is also a core component of the InfluxDB 2.0 ecosystem. This powerful tool is capable of handling both stream and batch data, enabling real-time responses through its unique programming language, TICKscript. In the context of contemporary applications, merely having dashboards and operator alerts is insufficient; there is a growing need for automation and action-triggering capabilities. Kapacitor employs a publish-subscribe architecture for its alerting system, where alerts are published to specific topics and handlers subscribe to these topics for updates. This flexible pub/sub framework, combined with the ability to execute User Defined Functions, empowers Kapacitor to function as a pivotal control plane within various environments, executing tasks such as auto-scaling, stock replenishment, and managing IoT devices. Additionally, Kapacitor's straightforward plugin architecture allows for seamless integration with various anomaly detection engines, further enhancing its versatility and effectiveness in data processing.
  • 2
    Lenses Reviews

    Lenses

    Lenses.io

    $49 per month
    Empower individuals to explore and analyze streaming data effectively. By sharing, documenting, and organizing your data, you can boost productivity by as much as 95%. Once you have your data, you can create applications tailored for real-world use cases. Implement a security model focused on data to address the vulnerabilities associated with open source technologies, ensuring data privacy is prioritized. Additionally, offer secure and low-code data pipeline functionalities that enhance usability. Illuminate all hidden aspects and provide unmatched visibility into data and applications. Integrate your data mesh and technological assets, ensuring you can confidently utilize open-source solutions in production environments. Lenses has been recognized as the premier product for real-time stream analytics, based on independent third-party evaluations. With insights gathered from our community and countless hours of engineering, we have developed features that allow you to concentrate on what generates value from your real-time data. Moreover, you can deploy and operate SQL-based real-time applications seamlessly over any Kafka Connect or Kubernetes infrastructure, including AWS EKS, making it easier than ever to harness the power of your data. By doing so, you will not only streamline operations but also unlock new opportunities for innovation.
  • 3
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 4
    Redpanda Reviews
    Introducing revolutionary data streaming features that enable unparalleled customer experiences. The Kafka API and its ecosystem are fully compatible with Redpanda, which boasts predictable low latencies and ensures zero data loss. Redpanda is designed to outperform Kafka by up to ten times, offering enterprise-level support and timely hotfixes. It also includes automated backups to S3 or GCS, providing a complete escape from the routine operations associated with Kafka. Additionally, it supports both AWS and GCP environments, making it a versatile choice for various cloud platforms. Built from the ground up for ease of installation, Redpanda allows for rapid deployment of streaming services. Once you witness its incredible capabilities, you can confidently utilize its advanced features in a production setting. We take care of provisioning, monitoring, and upgrades without requiring access to your cloud credentials, ensuring that sensitive data remains within your environment. Your streaming infrastructure will be provisioned, operated, and maintained seamlessly, with customizable instance types available to suit your specific needs. As your requirements evolve, expanding your cluster is straightforward and efficient, allowing for sustainable growth.
  • 5
    TIBCO Streaming Reviews
    TIBCO Streaming is an advanced analytics platform focused on real-time processing and analysis of fast-moving data streams, which empowers organizations to make swift, data-informed choices. With its low-code development environment found in StreamBase Studio, users can create intricate event processing applications with ease and minimal coding requirements. The platform boasts compatibility with over 150 connectors, such as APIs, Apache Kafka, MQTT, RabbitMQ, and databases like MySQL and JDBC, ensuring smooth integration with diverse data sources. Incorporating dynamic learning operators, TIBCO Streaming allows for the use of adaptive machine learning models that deliver contextual insights and enhance automation in decision-making. Additionally, it provides robust real-time business intelligence features that enable users to visualize current data alongside historical datasets for a thorough analysis. The platform is also designed for cloud readiness, offering deployment options across AWS, Azure, GCP, and on-premises setups, thereby ensuring flexibility for various organizational needs. Overall, TIBCO Streaming stands out as a powerful solution for businesses aiming to harness real-time data for strategic advantages.
  • 6
    Apache Flink Reviews

    Apache Flink

    Apache Software Foundation

    Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions.
  • Previous
  • You're on page 1
  • Next