Pipeliner CRM
                
                Pipeliner CRM is the AI-powered sales management solution designed to put salespeople first, delivering an intuitive, visual, and engaging experience that drives real productivity and rapid adoption for mid-sized, large, and enterprise teams. With comprehensive pipeline management, advanced AI assistance, no-code Automatizer workflows, and embedded business analytics, Pipeliner eliminates complexity while scaling effortlessly—reducing the need for third-party tools and dedicated admins.
Key features include personalized user interfaces, multiple pipeline visualizations, automated approvals, relationship mapping, quota management, and AI-driven email support. Seamlessly integrate with Google Suite, Microsoft Suite
                Learn more
             
        
            
            
            
            
            
                
                Vertex AI
                
                Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
                Learn more
             
        
            
            
            
            
            
                
                Codestral Embed
                
                Codestral Embed marks Mistral AI's inaugural venture into embedding models, focusing specifically on code and engineered for optimal code retrieval and comprehension. It surpasses other prominent code embedding models in the industry, including Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model, showcasing its superior performance. This model is capable of generating embeddings with varying dimensions and levels of precision; for example, even at a dimension of 256 and int8 precision, it maintains a competitive edge over rival models. The embeddings are organized by relevance, enabling users to select the top n dimensions, which facilitates an effective balance between quality and cost. Codestral Embed shines particularly in retrieval applications involving real-world code data, excelling in evaluations such as SWE-Bench, which uses actual GitHub issues and their solutions, along with Text2Code (GitHub), which enhances context for tasks like code completion or editing. Its versatility and performance make it a valuable tool for developers looking to leverage advanced code understanding capabilities.
                Learn more
             
        
            
            
            
            
            
                
                Cohere Embed
                
                Cohere's Embed stands out as a premier multimodal embedding platform that effectively converts text, images, or a blend of both into high-quality vector representations. These vector embeddings are specifically tailored for various applications such as semantic search, retrieval-augmented generation, classification, clustering, and agentic AI. The newest version, embed-v4.0, introduces the capability to handle mixed-modality inputs, permitting users to create a unified embedding from both text and images. It features Matryoshka embeddings that can be adjusted in dimensions of 256, 512, 1024, or 1536, providing users with the flexibility to optimize performance against resource usage. With a context length that accommodates up to 128,000 tokens, embed-v4.0 excels in managing extensive documents and intricate data formats. Moreover, it supports various compressed embedding types such as float, int8, uint8, binary, and ubinary, which contributes to efficient storage solutions and expedites retrieval in vector databases. Its multilingual capabilities encompass over 100 languages, positioning it as a highly adaptable tool for applications across the globe. Consequently, users can leverage this platform to handle diverse datasets effectively while maintaining performance efficiency.
                Learn more