Best upscaledb Alternatives in 2025
Find the top alternatives to upscaledb currently available. Compare ratings, reviews, pricing, and features of upscaledb alternatives in 2025. Slashdot lists the best upscaledb alternatives on the market that offer competing products that are similar to upscaledb. Sort through upscaledb alternatives below to make the best choice for your needs
-
1
Amazon ElastiCache
Amazon
Amazon ElastiCache enables users to effortlessly establish, operate, and expand widely-used open-source compatible in-memory data stores in the cloud environment. It empowers the development of data-driven applications or enhances the efficiency of existing databases by allowing quick access to data through high throughput and minimal latency in-memory stores. This service is particularly favored for various real-time applications such as caching, session management, gaming, geospatial services, real-time analytics, and queuing. With fully managed options for Redis and Memcached, Amazon ElastiCache caters to demanding applications that necessitate response times in the sub-millisecond range. Functioning as both an in-memory data store and a cache, it is designed to meet the needs of applications that require rapid data retrieval. Furthermore, by utilizing a fully optimized architecture that operates on dedicated nodes for each customer, Amazon ElastiCache guarantees incredibly fast and secure performance for its users' critical workloads. This makes it an essential tool for businesses looking to enhance their application's responsiveness and scalability. -
2
Amazon DynamoDB
Amazon
1 RatingAmazon DynamoDB is a versatile key-value and document database that provides exceptional single-digit millisecond performance, regardless of scale. As a fully managed service, it offers multi-region, multimaster durability along with integrated security features, backup and restore capabilities, and in-memory caching designed for internet-scale applications. With the ability to handle over 10 trillion requests daily and support peak loads exceeding 20 million requests per second, it serves a wide range of businesses. Prominent companies like Lyft, Airbnb, and Redfin, alongside major enterprises such as Samsung, Toyota, and Capital One, rely on DynamoDB for their critical operations, leveraging its scalability and performance. This allows organizations to concentrate on fostering innovation without the burden of operational management. You can create an immersive gaming platform that manages player data, session histories, and leaderboards for millions of users simultaneously. Additionally, it facilitates the implementation of design patterns for various applications like shopping carts, workflow engines, inventory management, and customer profiles. DynamoDB is well-equipped to handle high-traffic, large-scale events seamlessly, making it an ideal choice for modern applications. -
3
LevelDB
Google
LevelDB is a high-performance key-value storage library developed by Google, designed to maintain an ordered mapping between string keys and string values. The keys and values are treated as arbitrary byte arrays, and the stored data is organized in a sorted manner based on the keys. Users have the option to supply a custom comparison function to modify the default sorting behavior. The library allows for multiple changes to be grouped into a single atomic batch, ensuring data integrity during updates. Additionally, users can create a temporary snapshot for a consistent view of the data at any given moment. The library supports both forward and backward iteration through the stored data, enhancing flexibility during data access. Data is automatically compressed using the Snappy compression algorithm to optimize storage efficiency. Moreover, interactions with the external environment, such as file system operations, are managed through a virtual interface, giving users the ability to customize how the library interacts with the operating system. In practical applications, we utilize a database containing one million entries, where each entry consists of a 16-byte key and a 100-byte value. Notably, the values used in benchmarking compress to approximately half of their original size, allowing for significant space savings. We provide detailed performance metrics for sequential reads in both forward and reverse directions, as well as the effectiveness of random lookups, to showcase the library's capabilities. This comprehensive performance analysis aids developers in understanding how to optimize their use of LevelDB in various applications. -
4
Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
-
5
BoltDB
BoltDB
Bolt is a key/value store written entirely in Go, drawing inspiration from Howard Chu's LMDB project. The primary aim of this initiative is to offer a straightforward, quick, and dependable database solution for smaller projects that do not need the complexity of a full-fledged database server like Postgres or MySQL. Given that Bolt serves as a foundational component, a focus on simplicity is paramount. The API is intentionally minimal, emphasizing only the essential operations of retrieving and storing values. This streamlined approach was central to Bolt's original vision: to create an uncomplicated pure Go key/value store without overwhelming it with unnecessary features. Consequently, the project has successfully achieved this goal. Nonetheless, the narrowly defined scope has led to the conclusion of the project's development. Managing an open source database is a labor-intensive endeavor that demands significant time and resources. Any modifications to the codebase can have unforeseen and potentially severe consequences, making even minor adjustments necessitate extensive testing and validation over prolonged periods. Additionally, the project's limited functionality allows users to focus on core database operations without the distractions of a more complex system. -
6
VMware Tanzu GemFire
Broadcom
VMware Tanzu GemFire is a high-speed, distributed in-memory key-value storage solution that excels in executing read and write operations. It provides robust parallel message queues, ensuring continuous availability and an event-driven architecture that can be dynamically scaled without any downtime. As the demand for data storage grows to accommodate high-performance, real-time applications, Tanzu GemFire offers effortless linear scalability. Unlike traditional databases, which may lack the necessary reliability for microservices, Tanzu GemFire serves as an essential caching solution in modern distributed architectures. This platform enables applications to achieve low-latency responses for data retrieval while consistently delivering up-to-date information. Furthermore, applications can subscribe to real-time events, allowing them to quickly respond to changes as they occur. Continuous queries in Tanzu GemFire alert your application when new data becomes accessible, significantly reducing the load on your SQL database and enhancing overall performance. By integrating Tanzu GemFire, organizations can achieve a seamless data management experience that supports their growing needs. -
7
Riak KV
Riak
$0Riak is a distributed systems expert and works with Application teams to overcome distributed system challenges. Riak's Riak®, a distributed NoSQL databank, delivers: Unmatched resilience beyond the typical "high availability" offerings - Innovative technology to ensure data accuracy, and never lose a word. - Massive scale for commodity hardware - A common code foundation that supports true multi-model support Riak®, offers all of this while still focusing on ease-of-use. Choose Riak®, KV flexible key value data model for web scale profile management, session management, real time big data, catalog content management, customer 360, digital message and other use cases. Choose Riak®, TS for IoT, time series and other use cases. -
8
BergDB
BergDB
Greetings! BergDB is an efficient database built on Java and .NET, crafted for developers who want to concentrate on their tasks without getting bogged down by database complexities. It features straightforward key-value storage, ACID-compliant transactions, the ability to perform historic queries, effective concurrency management, secondary indices, swift append-only storage, replication capabilities, and seamless object serialization among other attributes. As an embedded, open-source, document-oriented, schemaless NoSQL database, BergDB is purposefully designed to deliver rapid transaction processing. Importantly, it ensures that all database writes adhere to ACID transactions, maintaining the highest consistency level available, which is akin to the serializable isolation level in SQL. The functionality of historic queries is beneficial for retrieving previous data states and managing concurrency efficiently, as read operations in BergDB are executed without locking any resources, allowing for smooth and uninterrupted access to data. This unique approach ensures that developers can work more productively, leveraging BergDB’s robust features to enhance application performance. -
9
ArcadeDB
ArcadeDB
FreeEffortlessly handle intricate models with ArcadeDB while ensuring no compromises are made. Say goodbye to the concept of Polyglot Persistence; there's no need to juggle multiple databases. With ArcadeDB's Multi-Model database, you can seamlessly store graphs, documents, key values, and time series data in one unified solution. As each model is inherently compatible with the database engine, you can avoid the delays caused by translation processes. Powered by advanced Alien Technology, ArcadeDB's engine can process millions of records every second. Notably, the speed of data traversal remains constant regardless of the database's size, whether it houses a handful of records or billions. ArcadeDB is versatile enough to function as an embedded database on a single server and can easily scale across multiple servers using Kubernetes. Its compact design allows it to operate on any platform while maintaining a minimal footprint. Your data's security is paramount; our robust, fully transactional engine guarantees durability for mission-critical production databases. Additionally, ArcadeDB employs a Raft Consensus Algorithm to ensure consistency and reliability across multiple servers, making it a top choice for data management. In an era where efficiency and reliability are crucial, ArcadeDB stands out as a comprehensive solution for diverse data storage needs. -
10
eXtremeDB
McObject
What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide. -
11
LeanXcale
LeanXcale
$0.127 per GB per monthLeanXcale is a rapidly scalable database that merges the features of both SQL and NoSQL systems. It is designed to handle large volumes of both batch and real-time data pipelines, ensuring that this data is accessible through SQL or GIS for diverse applications, including operational tasks, analytics, dashboard creation, or machine learning processes. Regardless of the technology stack in use, LeanXcale offers users the flexibility of SQL and NoSQL interfaces. The KiVi storage engine functions as a relational key-value data repository, enabling data access not only via the conventional SQL API but also through a direct ACID-compliant key-value interface. This particular interface facilitates high-speed data ingestion, optimizing efficiency by eliminating the overhead associated with SQL processing. Furthermore, its highly scalable and distributed storage engine spreads data across the cluster, thereby enhancing both performance and reliability while accommodating growing data needs seamlessly. -
12
Aerospike
Aerospike
Aerospike is the global leader for next-generation, real time NoSQL data solutions at any scale. Aerospike helps enterprises overcome seemingly impossible data bottlenecks and compete with other companies at a fraction of the cost and complexity of legacy NoSQL databases. Aerospike's Hybrid Memory Architecture™ is a patented technology that unlocks the full potential of modern hardware and delivers previously unimaginable value. It does this by delivering unimaginable value from huge amounts of data at both the edge, core, and in the cloud. Aerospike empowers customers with the ability to instantly combat fraud, dramatically increase shopping cart sizes, deploy global digital payment networks, and provide instant, one-to-1 personalization for millions. Aerospike customers include Airtel and Banca d'Italia as well as Snap, Verizon Media, Wayfair, PayPal, Snap, Verizon Media, and Nielsen. The company's headquarters is in Mountain View, California. Additional locations are in London, Bengaluru, India, and Tel Aviv in Israel. -
13
Valkey
Valkey
FreeValkey is a high-performance key/value datastore that is open source and designed to handle diverse workloads, including caching and message queuing, while also functioning as a primary database. With backing from the Linux Foundation, its open source status is guaranteed indefinitely. Valkey can be deployed as a standalone service or within a clustered environment, featuring options for replication and ensuring high availability. It provides a wide array of data types, such as strings, numbers, hashes, lists, sets, sorted sets, bitmaps, hyperloglogs, among others. Users have the ability to manipulate data structures directly with a comprehensive suite of commands. Additionally, Valkey offers native extensibility through built-in Lua scripting support and allows the use of module plugins to introduce new commands and data types. The latest version, Valkey 8.1, brings numerous enhancements that improve performance by reducing latency, boosting throughput, and optimizing memory consumption. This makes Valkey an increasingly efficient choice for developers looking for a flexible and powerful data management solution. -
14
Oracle Berkeley DB
Oracle
Berkeley DB encompasses a suite of embedded key-value database libraries that deliver scalable and high-performance data management functionalities for various applications. Its products utilize straightforward function-call APIs for accessing and managing data efficiently. With Berkeley DB, developers can create tailored data management solutions that bypass the typical complexities linked with custom projects. The library offers a range of reliable building-block technologies that can be adapted to meet diverse application requirements, whether for handheld devices or extensive data centers, catering to both local storage needs and global distribution, handling data volumes that range from kilobytes to petabytes. This versatility makes Berkeley DB a preferred choice for developers looking to implement efficient data solutions. -
15
Apache Ignite
Apache Ignite
Utilize Ignite as a conventional SQL database by employing JDBC drivers, ODBC drivers, or the dedicated SQL APIs that cater to Java, C#, C++, Python, and various other programming languages. Effortlessly perform operations such as joining, grouping, aggregating, and ordering your distributed data, whether it is stored in memory or on disk. By integrating Ignite as an in-memory cache or data grid across multiple external databases, you can enhance the performance of your existing applications by a factor of 100. Envision a cache that allows for SQL querying, transactional operations, and computational tasks. Develop contemporary applications capable of handling both transactional and analytical workloads by leveraging Ignite as a scalable database that exceeds the limits of available memory. Ignite smartly allocates memory for frequently accessed data and resorts to disk storage when dealing with less frequently accessed records. This allows for the execution of kilobyte-sized custom code across vast petabytes of data. Transform your Ignite database into a distributed supercomputer, optimized for rapid calculations, intricate analytics, and machine learning tasks, ensuring that your applications remain responsive and efficient even under heavy loads. Embrace the potential of Ignite to revolutionize your data processing capabilities and drive innovation within your projects. -
16
Kyoto Tycoon
Altice Labs
Kyoto Tycoon is a streamlined network server that operates on the Kyoto Cabinet key-value database, designed for optimal performance and concurrency. Among its various features is a comprehensive protocol that utilizes HTTP, along with a streamlined binary protocol that enhances speed. Client libraries supporting multiple programming languages are available, including a dedicated one for Python that we maintain. Additionally, it can be configured to provide simultaneous compatibility with the memcached protocol, albeit with restrictions on certain data update commands. This feature is particularly beneficial for those looking to replace memcached in scenarios requiring larger memory and data persistence. Furthermore, you can access enhanced versions of the most recent upstream releases, which are specifically intended for use in actual production settings, incorporating bug fixes, minor new features, and packaging updates for several Linux distributions. These improvements ensure a more reliable and efficient experience for users. -
17
Voldemort
Voldemort
Voldemort does not function as a relational database, as it does not aim to fulfill arbitrary relations while adhering to ACID properties. It also does not operate as an object database that seeks to seamlessly map object reference structures. Additionally, it does not introduce a novel abstraction like document orientation. Essentially, it serves as a large, distributed, durable, and fault-tolerant hash table. For applications leveraging an Object-Relational (O/R) mapper such as ActiveRecord or Hibernate, this can lead to improved horizontal scalability and significantly enhanced availability, albeit with a considerable trade-off in convenience. In the context of extensive applications facing the demands of internet-level scalability, a system is often comprised of multiple functionally divided services or APIs, which may handle storage across various data centers with their own horizontally partitioned storage systems. In these scenarios, the possibility of performing arbitrary joins within the database becomes impractical, as not all data can be accessed within a single database instance, making data management even more complex. Consequently, developers must adapt their strategies to navigate these limitations effectively. -
18
SwayDB
SwayDB
An adaptable and efficient key-value storage engine, both persistent and in-memory, is engineered for superior performance and resource optimization. It is crafted to effectively handle data on-disk and in-memory by identifying recurring patterns in serialized bytes, without limiting itself to any particular data model, be it SQL or NoSQL, or storage medium, whether it be Disk or RAM. The core system offers a variety of configurations that can be fine-tuned for specific use cases, while also aiming to incorporate automatic runtime adjustments by gathering and analyzing machine statistics and read-write behaviors. Users can manage data easily by utilizing well-known structures such as Map, Set, Queue, SetMap, and MultiMap, all of which can seamlessly convert to native collections in Java and Scala. Furthermore, it allows for conditional updates and data modifications using any Java, Scala, or native JVM code, eliminating the need for a query language and ensuring flexibility in data handling. This design not only promotes efficiency but also encourages the adoption of custom solutions tailored to unique application needs. -
19
InterSystems Caché
InterSystems
InterSystems Cache®, a high-performance database, powers transaction processing applications all over the globe. It's used for everything, from mapping a million stars in the Milky Way to processing a trillion equity trades per day to managing smart energy grids. InterSystems has developed Cache, a multi-model (object-relational, key-value), DBMS and application server. InterSystems Cache offers multiple APIs that allow you to work with the same data simultaneously: key/value, relational/object, document, multidimensional, object, object, and object. Data can be managed using SQL, Java, node.js.NET, C++ and Python. Cache also offers an application server that hosts web apps (CSP, REST, SOAP and other types TCP access for Cache data). -
20
RocksDB
RocksDB
RocksDB is a high-performance database engine that employs a log-structured design and is entirely implemented in C++. It treats keys and values as byte streams of arbitrary sizes, allowing for flexibility in data representation. Specifically designed for rapid, low-latency storage solutions such as flash memory and high-speed disks, RocksDB capitalizes on the impressive read and write speeds provided by these technologies. The database supports a range of fundamental operations, from basic tasks like opening and closing a database to more complex functions such as merging and applying compaction filters. Its versatility makes RocksDB suitable for various workloads, including database storage engines like MyRocks as well as application data caching and embedded systems. This adaptability ensures that developers can rely on RocksDB for a wide spectrum of data management needs in different environments. -
21
Lucid KV
Lucid KV
Lucid is in the process of development, aiming to create a swift, secure, and decentralized key-value storage solution that users can access via an HTTP API. Additionally, we plan to incorporate features such as data persistence, encryption, WebSocket streaming, and replication, along with various other functionalities. Among these features are the storage of private keys, Internet of Things (IoT) capabilities for the collection and storage of statistical data, distributed caching, service discovery, distributed configuration management, and blob storage. Our goal is to deliver a comprehensive solution that meets diverse user needs while ensuring robust performance and security. -
22
Apache Accumulo
Apache Corporation
Apache Accumulo enables users to efficiently store and manage extensive data sets across a distributed cluster. It relies on Apache Hadoop's HDFS for data storage and utilizes Apache ZooKeeper to achieve consensus among nodes. While many users engage with Accumulo directly, it also serves as a foundational data store for various open-source projects. To gain deeper insights into Accumulo, you can explore the Accumulo tour, consult the user manual, and experiment with the provided example code. Should you have any inquiries, please do not hesitate to reach out to us. Accumulo features a programming mechanism known as Iterators, which allows for the modification of key/value pairs at different stages of the data management workflow. Each key/value pair within Accumulo is assigned a unique security label that restricts query outcomes based on user permissions. The system operates on a cluster configuration that can incorporate one or more HDFS instances, providing flexibility as data storage needs evolve. Additionally, nodes within the cluster can be dynamically added or removed in response to changes in the volume of data stored, enhancing scalability and resource management. -
23
FoundationDB
FoundationDB
FoundationDB operates as a multi-model database, enabling the storage of various data types within a single system. Its Key-Value Store component ensures that all information is securely stored, distributed, and replicated. The installation, scaling, and management of FoundationDB are straightforward, benefiting from a distributed architecture that effectively scales and handles failures while maintaining the behavior of a singular ACID database. It delivers impressive performance on standard hardware, making it capable of managing substantial workloads at a minimal cost. With years of production use, FoundationDB has been reinforced through practical experience and insights gained over time. Additionally, its backup system is unparalleled, utilizing a deterministic simulation engine for testing purposes. We invite you to become an active member of our open-source community, where you can engage in both technical and user discussions on our forums and discover ways to contribute to the project. Your involvement can help shape the future of FoundationDB! -
24
etcd
etcd
etcd serves as a highly reliable and consistent distributed key-value store, ideal for managing data required by a cluster or distributed system. It effectively manages leader elections amidst network splits and is resilient to machine failures, including those affecting the leader node. Data can be organized in a hierarchical manner, similar to a traditional filesystem, allowing for structured storage. Additionally, it offers the capability to monitor specific keys or directories for changes, enabling real-time reactions to any alterations in values, ensuring that systems stay synchronized and responsive. This functionality is crucial for maintaining consistency across distributed applications. -
25
Oracle Database
Oracle
Oracle's database offerings provide clients with cost-effective and high-efficiency options, including the renowned multi-model database management system, as well as in-memory, NoSQL, and MySQL databases. The Oracle Autonomous Database, which can be accessed on-premises through Oracle Cloud@Customer or within the Oracle Cloud Infrastructure, allows users to streamline their relational database systems and lessen management burdens. By removing the intricacies associated with operating and securing Oracle Database, Oracle Autonomous Database ensures customers experience exceptional performance, scalability, and reliability. Furthermore, organizations concerned about data residency and network latency can opt for on-premises deployment of Oracle Database. Additionally, clients who rely on specific versions of Oracle databases maintain full authority over their operational versions and the timing of any updates. This flexibility empowers businesses to tailor their database environments according to their unique requirements. -
26
Infinispan
Infinispan
Infinispan is an open-source, in-memory data grid that provides versatile deployment possibilities and powerful functionalities for data storage, management, and processing. This technology features a key/value data repository capable of accommodating various data types, ranging from Java objects to simple text. Infinispan ensures high availability and fault tolerance by distributing data across elastically scalable clusters, making it suitable for use as either a volatile cache or a persistent data solution. By positioning data closer to the application logic, Infinispan enhances application performance through reduced latency and improved throughput. As a Java library, integrating Infinispan into your project is straightforward; all you need to do is include it in your application's dependencies, allowing you to efficiently manage data within the same memory environment as your executing code. Furthermore, its flexibility makes it an ideal choice for developers seeking to optimize data access in high-demand scenarios. -
27
JaguarDB
JaguarDB
JaguarDB facilitates the rapid ingestion of time series data while integrating location-based information. It possesses the capability to index data across both spatial and temporal dimensions effectively. Additionally, the system allows for swift back-filling of time series data, enabling the insertion of significant volumes of historical data points. Typically, time series refers to a collection of data points that are arranged in chronological order. However, in JaguarDB, time series encompasses both a sequence of data points and multiple tick tables that hold aggregated data values across designated time intervals. For instance, a time series table in JaguarDB may consist of a primary table that organizes data points in time sequence, along with tick tables that represent various time frames such as 5 minutes, 15 minutes, hourly, daily, weekly, and monthly, which store aggregated data for those intervals. The structure for RETENTION mirrors that of the TICK format but allows for a flexible number of retention periods, defining the duration for which data points in the base table are maintained. This approach ensures that users can efficiently manage and analyze historical data according to their specific needs. -
28
GridDB
GridDB
GridDB utilizes multicast communication to form its cluster, so it's essential to configure the network for this purpose. Start by verifying the host name and IP address; you can do this by running the command “hostname -i” to check the host's IP address configuration. If the reported IP address matches the specified value below, you can proceed directly to the next section without any further network adjustments. GridDB is a database designed to manage a collection of data entries, each consisting of a key paired with several values. In addition to functioning as an in-memory database that organizes all data within the memory, it also supports a hybrid architecture that combines both memory and disk storage, which can include solid-state drives (SSDs). This flexibility allows for efficient data management and retrieval, catering to various application needs. -
29
AsparaDB
Alibaba
ApsaraDB for Redis is a highly automated and scalable solution designed for developers to efficiently manage shared data storage across various applications, processes, or servers. Compatible with the Redis protocol, this tool boasts impressive read-write performance and guarantees data persistence by utilizing both memory and hard disk storage options. By accessing data from in-memory caches, ApsaraDB for Redis delivers rapid read-write capabilities while ensuring that data remains reliable and persistent through its dual storage modes. It also supports sophisticated data structures like leaderboards, counters, sessions, and tracking, which are typically difficult to implement with standard databases. Additionally, ApsaraDB for Redis features an enhanced version known as "Tair." Tair has been effectively managing data caching for Alibaba Group since 2009, showcasing remarkable performance during high-demand events like the Double 11 Shopping Festival, further solidifying its reputation in the field. This makes ApsaraDB for Redis and Tair invaluable tools for developers looking to optimize data handling in large-scale applications. -
30
Azure Cache for Redis
Microsoft
$1.11 per monthAs the volume of traffic and user demands on your application grows, enhance its performance in a straightforward and economical way. Implementing a caching layer within your application architecture can efficiently manage thousands of concurrent users, providing near-instantaneous response times, all while leveraging the advantages of a fully managed service. Achieve remarkable throughput and performance capable of processing millions of requests per second with sub-millisecond latency. This fully managed service includes automatic updates, patching, scaling, and provisioning, allowing you to concentrate on development without distraction. Integration of modules like RedisBloom, RediSearch, and RedisTimeSeries empowers your application with comprehensive capabilities for data analysis, search functionality, and real-time streaming. You will benefit from robust features such as clustering, built-in replication, Redis on Flash, and an impressive availability rate of up to 99.99 percent, ensuring reliability. Furthermore, by complementing services like Azure SQL Database and Azure Cosmos DB, you can enhance your data tier's throughput scalability at a more economical rate compared to merely expanding database instances. Ultimately, these enhancements not only improve the user experience but also position your application for future growth and adaptability. -
31
Hazelcast
Hazelcast
In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing. -
32
Alibaba Cloud Tablestore
Alibaba Cloud
$0.00010 per GBTablestore facilitates effortless growth in data capacity and access concurrency through innovative technologies like data sharding and server load balancing, ensuring real-time access to vast amounts of structured data. It maintains three copies of data with strong consistency, ensuring high availability and reliability of services. Additionally, it supports both full and incremental data tunnels, allowing for smooth integration with a variety of products for big data analytics and real-time streaming computations. The distributed architecture boasts automatic scaling of single tables, accommodating data sizes up to 10 petabytes and handling access concurrency levels in the tens of millions. To further safeguard data, it incorporates multi-dimensional and multi-level security measures along with resource access management. With its low-latency performance, high concurrency capabilities, and elastic resources, paired with a Pay-As-You-Go pricing model, this service ensures that your risk control system operates under optimal conditions while providing strict oversight of transaction-related risks, ultimately enhancing operational efficiency. In essence, Tablestore combines cutting-edge technology with robust security to meet the demands of modern data management. -
33
Speedb
Speedb
FreeIntroducing Speedb, the cutting-edge key-value storage engine that is fully compatible with RocksDB, offering enhanced stability, efficiency, and performance improvements. By becoming a part of the Hive, Speedb’s open-source community, you can engage with others to refine and exchange insights and best practices regarding RocksDB. Speedb stands as a viable alternative for users of LevelDB and RocksDB who are looking to elevate their applications. If you are utilizing event streaming platforms such as Kafka, Flink, Spark, Splunk, or Elastic, incorporating Speedb can significantly boost their performance. The growing volume of metadata in contemporary data sets is leading to notable performance challenges for various applications, but with Speedb, you can maintain affordable costs while ensuring your applications run seamlessly, even during peak demand. When considering whether to upgrade or implement a new key-value store within your infrastructure, Speedb is well-equipped to meet the demands. By integrating Speedb's sophisticated key-value storage engine into your projects, you will swiftly notice enhancements in performance and efficiency, allowing you to focus on innovation rather than troubleshooting. -
34
OrigoDB
Origo
€200 per GB RAM per serverOrigoDB allows you to create high-quality, mission-critical systems that deliver real-time performance while significantly reducing time and costs. This is not just empty advertising! We encourage you to continue reading for a straightforward overview of our features. Feel free to reach out with any inquiries or download and give it a try today! Operations performed in memory are significantly quicker than those conducted on disk. An individual OrigoDB engine is capable of processing millions of read transactions and thousands of write transactions per second, all while ensuring synchronous command journaling to a local SSD. This capability is the primary motivation behind the development of OrigoDB. Utilizing a single object-oriented domain model is much more efficient than managing an entire stack that encompasses a relational model, object/relational mapping, data access code, views, and stored procedures, which can lead to unnecessary complexity! Furthermore, the OrigoDB engine provides complete ACID compliance right from the start. Commands are executed sequentially, allowing the in-memory model to transition smoothly from one consistent state to another, ensuring data integrity at all times. This streamlined approach ultimately enhances overall system performance and reliability. -
35
InterSystems IRIS
InterSystems
23 RatingsInterSystems IRIS, a cloud-first data platform, is a multi-model transactional database management engine, application development platform, interoperability engine and open analytics platform. InterSystems IRIS offers a variety of APIs that allow you to work with transactional persistent data simultaneously. These include key-value, relational and object, document, and multidimensional. Data can be managed by SQL, Java, node.js, .NET, C++, Python, and native server-side ObjectScript language. InterSystems IRIS features an Interoperability engine as well as modules for building AI solutions. InterSystems IRIS features horizontal scalability (sharding and ECP), and High Availability features such as Business intelligence, transaction support and backup. -
36
Symas LMDB
Symas Corporation
Symas LMDB is an incredibly swift and memory-efficient database that we created specifically for the OpenLDAP Project. Utilizing memory-mapped files, it achieves the read speed typical of purely in-memory databases while also providing the durability associated with traditional disk-based systems. In essence, despite its modest size of just 32KB of object code, LMDB packs a significant punch; it is indeed the perfect 32KB. The compact nature and efficiency of LMDB are integral to its remarkable capabilities. For those integrating LMDB into their applications, Symas provides fixed-price commercial support. Development is actively carried out in the mdb.master branch of the OpenLDAP Project’s git repository. Moreover, LMDB has garnered attention across numerous impressive products and publications, highlighting its versatility and effectiveness in various contexts. Its widespread recognition further cements its status as a vital tool for developers. -
37
Terracotta
Software AG
Terracotta DB offers a robust, distributed solution for in-memory data management, addressing both caching and operational storage needs while facilitating both transactional and analytical processes. The combination of swift RAM capabilities with extensive data resources empowers businesses significantly. With BigMemory, users benefit from: immediate access to vast amounts of in-memory data, impressive throughput paired with consistently low latency, compatibility with Java®, Microsoft® .NET/C#, and C++ applications, and an outstanding 99.999% uptime. The system boasts linear scalability, ensuring data consistency across various servers, and employs optimized data storage strategies across both RAM and SSDs. Additionally, it provides SQL support for in-memory data queries, lowers infrastructure expenses through enhanced hardware efficiency, and guarantees high-performance, persistent storage that ensures durability and rapid restarts. Comprehensive monitoring, management, and control features are included, alongside ultra-fast data stores that intelligently relocate data as needed. Furthermore, the capacity for data replication across multiple data centers enhances disaster recovery capabilities, enabling real-time management of dynamic data flows. This suite of features positions Terracotta DB as an essential asset for enterprises striving for efficiency and reliability in their data operations. -
38
Google Cloud Memorystore
Google
Enhance performance by utilizing a scalable, secure, and highly available in-memory service tailored for Redis and Memcached. Memorystore simplifies complex procedures associated with open source Redis and Memcached, such as ensuring high availability, managing failover, conducting patching, and monitoring, allowing developers to focus more on coding. You can begin with the most basic tier and smallest configuration, gradually expanding your instance with minimal disruption. Memorystore for Memcached has the capacity to manage clusters up to 5 TB, delivering millions of queries per second at remarkably low latency. In contrast, Memorystore for Redis instances are designed to be replicated across two zones, offering a service level agreement of 99.9% availability. Continuous monitoring and automatic failover mechanisms ensure that applications face minimal interruptions. You can select from two of the most widely used open source caching solutions to develop your applications. Memorystore provides full protocol compatibility for both Redis and Memcached, enabling you to choose the caching engine that best aligns with your budget and availability needs while maximizing your application's performance. By leveraging these features, developers can significantly improve their operational efficiency. -
39
FairCom DB
FairCom Corporation
FairCom DB is ideal to handle large-scale, mission critical core-business applications that demand performance, reliability, and scalability that cannot easily be achieved with other databases. FairCom DB provides predictable high-velocity transactions with big data analytics and massively parallel big-data processing. It provides developers with NoSQL APIs that allow them to process binary data at machine speed. ANSI SQL allows for simple queries and analysis over the same binary data. Verizon is one of the companies that has taken advantage of FairCom DB's flexibility. Verizon recently selected FairCom DB to be its in-memory database for the Verizon Intelligent Network Control Platform Transaction Server Migrating. FairCom DB, an advanced database engine, gives you a Continuum of Control that allows you to achieve unparalleled performance at a low total cost of ownership (TCO). FairCom DB doesn't conform to you. FairCom DB conforms. FairCom DB doesn't force you to conform to the database's limitations. -
40
Azure Cosmos DB
Microsoft
Azure Cosmos DB offers a fully managed NoSQL database solution tailored for contemporary application development, ensuring single-digit millisecond response times and an impressive availability rate of 99.999 percent, all supported by service level agreements. This service provides automatic, instantaneous scalability and supports open-source APIs for MongoDB and Cassandra, allowing for rapid data operations. With its turnkey multi-master global distribution, users can experience swift read and write operations from any location around the globe. Additionally, Azure Cosmos DB enables organizations to accelerate their decision-making processes by facilitating near-real-time analytics and AI capabilities on the operational data housed within the database. Furthermore, Azure Synapse Link for Azure Cosmos DB integrates effortlessly with Azure Synapse Analytics, ensuring smooth performance without necessitating data movement or compromising the efficiency of the operational data store, enhancing the overall functionality of your data strategy. This integration not only streamlines workflows but also empowers users to derive insights more efficiently. -
41
Macrometa
Macrometa
We provide a globally distributed real-time database, along with stream processing and computing capabilities for event-driven applications, utilizing as many as 175 edge data centers around the world. Developers and API creators appreciate our platform because it addresses the complex challenges of managing shared mutable state across hundreds of locations with both strong consistency and minimal latency. Macrometa empowers you to seamlessly enhance your existing infrastructure, allowing you to reposition portions of your application or the entire setup closer to your end users. This strategic placement significantly boosts performance, enhances user experiences, and ensures adherence to international data governance regulations. Serving as a serverless, streaming NoSQL database, Macrometa encompasses integrated pub/sub features, stream data processing, and a compute engine. You can establish a stateful data infrastructure, create stateful functions and containers suitable for prolonged workloads, and handle data streams in real time. While you focus on coding, we manage all operational tasks and orchestration, freeing you to innovate without constraints. As a result, our platform not only simplifies development but also optimizes resource utilization across global networks. -
42
Apache HBase
The Apache Software Foundation
Utilize Apache HBase™ when you require immediate and random read/write capabilities for your extensive data sets. This initiative aims to manage exceptionally large tables that can contain billions of rows across millions of columns on clusters built from standard hardware. It features automatic failover capabilities between RegionServers to ensure reliability. Additionally, it provides an intuitive Java API for client interaction, along with a Thrift gateway and a RESTful Web service that accommodates various data encoding formats, including XML, Protobuf, and binary. Furthermore, it supports the export of metrics through the Hadoop metrics system, enabling data to be sent to files or Ganglia, as well as via JMX for enhanced monitoring and management. With these features, HBase stands out as a robust solution for handling big data challenges effectively. -
43
GridGain
GridGain Systems
This robust enterprise platform, built on Apache Ignite, delivers lightning-fast in-memory performance and extensive scalability for data-heavy applications, ensuring real-time access across various datastores and applications. Transitioning from Ignite to GridGain requires no code modifications, allowing for secure deployment of clusters on a global scale without experiencing any downtime. You can conduct rolling upgrades on your production clusters without affecting application availability, and replicate data across geographically dispersed data centers to balance workloads and mitigate the risk of outages in specific regions. Your data remains secure both at rest and in transit, while compliance with security and privacy regulations is guaranteed. Seamless integration with your organization’s existing authentication and authorization frameworks is straightforward, and comprehensive auditing of data and user activities can be enabled. Additionally, you can establish automated schedules for both full and incremental backups, ensuring that restoring your cluster to its most stable state is achievable through snapshots and point-in-time recovery. This platform not only promotes efficiency but also enhances resilience and security for all data operations. -
44
Google Cloud Bigtable
Google
Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard. -
45
Oracle Coherence
Oracle
Oracle Coherence stands out as the premier in-memory data grid solution, empowering organizations to effectively scale their critical applications by offering rapid access to often-used data. With the growth of data volumes and the rising expectations of customers—propelled by the internet of things, social media, mobile technology, cloud computing, and the prevalence of always-connected devices—there is an escalating demand for real-time data management, relief for overloaded shared data services, and assurance of availability. The recent update, version 14.1.1, introduces a unique scalable messaging feature, enables polyglot programming on GraalVM at the grid level, incorporates distributed tracing within the grid, and ensures certification with JDK 11. Coherence manages data by storing each item across several members, including one primary and multiple backup copies, and it does not deem any modification complete until the backups are securely created. This design guarantees that your data grid remains resilient to failures, whether they affect a single JVM or an entire data center, thereby enhancing reliability and performance. Ultimately, Oracle Coherence facilitates a robust framework for organizations to thrive in a data-driven world.