Best gpt-oss-20b Alternatives in 2025
Find the top alternatives to gpt-oss-20b currently available. Compare ratings, reviews, pricing, and features of gpt-oss-20b alternatives in 2025. Slashdot lists the best gpt-oss-20b alternatives on the market that offer competing products that are similar to gpt-oss-20b. Sort through gpt-oss-20b alternatives below to make the best choice for your needs
-
1
GPT-5
OpenAI
$1.25 per 1M tokensOpenAI’s GPT-5 represents the cutting edge in AI language models, designed to be smarter, faster, and more reliable across diverse applications such as legal analysis, scientific research, and financial modeling. This flagship model incorporates built-in “thinking” to deliver accurate, professional, and nuanced responses that help users solve complex problems. With a massive context window and high token output limits, GPT-5 supports extensive conversations and intricate coding tasks with minimal prompting. It introduces advanced features like the verbosity parameter, enabling users to control the detail and tone of generated content. GPT-5 also integrates seamlessly with enterprise data sources like Google Drive and SharePoint, enhancing response relevance with company-specific knowledge while ensuring data privacy. The model’s improved personality and steerability make it adaptable for a wide range of business needs. Available in ChatGPT and API platforms, GPT-5 brings expert intelligence to every user, from casual individuals to large organizations. Its release marks a major step forward in AI-assisted productivity and collaboration. -
2
Hermes 4
Nous Research
FreeHermes 4 represents the cutting-edge advancement in Nous Research's series of neutrally aligned, steerable foundational models, featuring innovative hybrid reasoners that can fluidly transition between creative, expressive outputs and concise, efficient responses tailored to user inquiries. This model is engineered to prioritize user and system commands over any corporate ethical guidelines, resulting in interactions that are more conversational and engaging, avoiding a tone that feels overly authoritative or ingratiating, while fostering opportunities for roleplay and imaginative engagement. By utilizing a specific tag within prompts, users can activate a deeper level of reasoning that is resource-intensive, allowing them to address intricate challenges, all while maintaining efficiency for simpler tasks. With a training dataset 50 times larger than that of its predecessor, Hermes 3, much of which was synthetically produced using Atropos, Hermes 4 exhibits remarkable enhancements in performance. Additionally, this evolution not only improves accuracy but also broadens the range of applications for which the model can be effectively employed. -
3
Magistral
Mistral AI
Magistral is the inaugural language model family from Mistral AI that emphasizes reasoning, offered in two variants: Magistral Small, a 24 billion parameter open-weight model accessible under Apache 2.0 via Hugging Face, and Magistral Medium, a more robust enterprise-grade version that can be accessed through Mistral's API, the Le Chat platform, and various major cloud marketplaces. Designed for specific domains, it excels in transparent, multilingual reasoning across diverse tasks such as mathematics, physics, structured calculations, programmatic logic, decision trees, and rule-based systems, generating outputs that follow a chain of thought in the user's preferred language, which can be easily tracked and validated. This release signifies a transition towards more compact yet highly effective transparent AI reasoning capabilities. Currently, Magistral Medium is in preview on platforms including Le Chat, the API, SageMaker, WatsonX, Azure AI, and Google Cloud Marketplace. Its design is particularly suited for general-purpose applications that necessitate extended thought processes and improved accuracy compared to traditional non-reasoning language models. The introduction of Magistral represents a significant advancement in the pursuit of sophisticated reasoning in AI applications. -
4
gpt-oss-120b
OpenAI
gpt-oss-120b is a text-only reasoning model with 120 billion parameters, released under the Apache 2.0 license and managed by OpenAI’s usage policy, developed with insights from the open-source community and compatible with the Responses API. It is particularly proficient in following instructions, utilizing tools like web search and Python code execution, and allowing for adjustable reasoning effort, thereby producing comprehensive chain-of-thought and structured outputs that can be integrated into various workflows. While it has been designed to adhere to OpenAI's safety policies, its open-weight characteristics present a risk that skilled individuals might fine-tune it to circumvent these safeguards, necessitating that developers and enterprises apply additional measures to ensure safety comparable to that of hosted models. Evaluations indicate that gpt-oss-120b does not achieve high capability thresholds in areas such as biological, chemical, or cyber domains, even following adversarial fine-tuning. Furthermore, its release is not seen as a significant leap forward in biological capabilities, marking a cautious approach to its deployment. As such, users are encouraged to remain vigilant about the potential implications of its open-weight nature. -
5
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
6
EXAONE Deep
LG
FreeEXAONE Deep represents a collection of advanced language models that are enhanced for reasoning, created by LG AI Research, and come in sizes of 2.4 billion, 7.8 billion, and 32 billion parameters. These models excel in a variety of reasoning challenges, particularly in areas such as mathematics and coding assessments. Significantly, the EXAONE Deep 2.4B model outshines other models of its size, while the 7.8B variant outperforms both open-weight models of similar dimensions and the proprietary reasoning model known as OpenAI o1-mini. Furthermore, the EXAONE Deep 32B model competes effectively with top-tier open-weight models in the field. The accompanying repository offers extensive documentation that includes performance assessments, quick-start guides for leveraging EXAONE Deep models with the Transformers library, detailed explanations of quantized EXAONE Deep weights formatted in AWQ and GGUF, as well as guidance on how to run these models locally through platforms like llama.cpp and Ollama. Additionally, this resource serves to enhance user understanding and accessibility to the capabilities of EXAONE Deep models. -
7
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
8
Phi-4-reasoning-plus
Microsoft
Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models. -
9
Pixtral Large
Mistral AI
FreePixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations. -
10
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
11
Phi-4-reasoning
Microsoft
Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts. -
12
MiniMax-M1
MiniMax
The MiniMax‑M1 model, introduced by MiniMax AI and licensed under Apache 2.0, represents a significant advancement in hybrid-attention reasoning architecture. With an extraordinary capacity for handling a 1 million-token context window and generating outputs of up to 80,000 tokens, it facilitates in-depth analysis of lengthy texts. Utilizing a cutting-edge CISPO algorithm, MiniMax‑M1 was trained through extensive reinforcement learning, achieving completion on 512 H800 GPUs in approximately three weeks. This model sets a new benchmark in performance across various domains, including mathematics, programming, software development, tool utilization, and understanding of long contexts, either matching or surpassing the capabilities of leading models in the field. Additionally, users can choose between two distinct variants of the model, each with a thinking budget of either 40K or 80K, and access the model's weights and deployment instructions on platforms like GitHub and Hugging Face. Such features make MiniMax‑M1 a versatile tool for developers and researchers alike. -
13
Mistral 7B
Mistral AI
FreeMistral 7B is a language model with 7.3 billion parameters that demonstrates superior performance compared to larger models such as Llama 2 13B on a variety of benchmarks. It utilizes innovative techniques like Grouped-Query Attention (GQA) for improved inference speed and Sliding Window Attention (SWA) to manage lengthy sequences efficiently. Released under the Apache 2.0 license, Mistral 7B is readily available for deployment on different platforms, including both local setups and prominent cloud services. Furthermore, a specialized variant known as Mistral 7B Instruct has shown remarkable capabilities in following instructions, outperforming competitors like Llama 2 13B Chat in specific tasks. This versatility makes Mistral 7B an attractive option for developers and researchers alike. -
14
DeepSeekMath
DeepSeek
FreeDeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics. -
15
Phi-4-mini-flash-reasoning
Microsoft
Phi-4-mini-flash-reasoning is a 3.8 billion-parameter model that is part of Microsoft's Phi series, specifically designed for edge, mobile, and other environments with constrained resources where processing power, memory, and speed are limited. This innovative model features the SambaY hybrid decoder architecture, integrating Gated Memory Units (GMUs) with Mamba state-space and sliding-window attention layers, achieving up to ten times the throughput and a latency reduction of 2 to 3 times compared to its earlier versions without compromising on its ability to perform complex mathematical and logical reasoning. With a support for a context length of 64K tokens and being fine-tuned on high-quality synthetic datasets, it is particularly adept at handling long-context retrieval, reasoning tasks, and real-time inference, all manageable on a single GPU. Available through platforms such as Azure AI Foundry, NVIDIA API Catalog, and Hugging Face, Phi-4-mini-flash-reasoning empowers developers to create applications that are not only fast but also scalable and capable of intensive logical processing. This accessibility allows a broader range of developers to leverage its capabilities for innovative solutions. -
16
Codestral
Mistral AI
FreeWe are excited to unveil Codestral, our inaugural code generation model. This open-weight generative AI system is specifically crafted for tasks related to code generation, enabling developers to seamlessly write and engage with code via a unified instruction and completion API endpoint. As it becomes proficient in both programming languages and English, Codestral is poised to facilitate the creation of sophisticated AI applications tailored for software developers. With a training foundation that encompasses a wide array of over 80 programming languages—ranging from widely-used options like Python, Java, C, C++, JavaScript, and Bash to more niche languages such as Swift and Fortran—Codestral ensures a versatile support system for developers tackling various coding challenges and projects. Its extensive language capabilities empower developers to confidently navigate different coding environments, making Codestral an invaluable asset in the programming landscape. -
17
DeepSeek V3.1
DeepSeek
FreeDeepSeek V3.1 stands as a revolutionary open-weight large language model, boasting an impressive 685-billion parameters and an expansive 128,000-token context window, which allows it to analyze extensive documents akin to 400-page books in a single invocation. This model offers integrated functionalities for chatting, reasoning, and code creation, all within a cohesive hybrid architecture that harmonizes these diverse capabilities. Furthermore, V3.1 accommodates multiple tensor formats, granting developers the versatility to enhance performance across various hardware setups. Preliminary benchmark evaluations reveal strong results, including a remarkable 71.6% on the Aider coding benchmark, positioning it competitively with or even superior to systems such as Claude Opus 4, while achieving this at a significantly reduced cost. Released under an open-source license on Hugging Face with little publicity, DeepSeek V3.1 is set to revolutionize access to advanced AI technologies, potentially disrupting the landscape dominated by conventional proprietary models. Its innovative features and cost-effectiveness may attract a wide range of developers eager to leverage cutting-edge AI in their projects. -
18
Command A Translate
Cohere AI
Cohere's Command A Translate is a robust machine translation solution designed for enterprises, offering secure and top-notch translation capabilities in 23 languages pertinent to business. It operates on an advanced 111-billion-parameter framework with an 8K-input / 8K-output context window, providing superior performance that outshines competitors such as GPT-5, DeepSeek-V3, DeepL Pro, and Google Translate across various benchmarks. The model facilitates private deployment options for organizations handling sensitive information, ensuring they maintain total control of their data, while also featuring a pioneering “Deep Translation” workflow that employs an iterative, multi-step refinement process to significantly improve translation accuracy for intricate scenarios. RWS Group’s external validation underscores its effectiveness in managing demanding translation challenges. Furthermore, the model's parameters are accessible for research through Hugging Face under a CC-BY-NC license, allowing for extensive customization, fine-tuning, and adaptability for private implementations, making it an attractive option for organizations seeking tailored language solutions. This versatility positions Command A Translate as an essential tool for enterprises aiming to enhance their communication across global markets. -
19
OpenAI's o1-pro represents a more advanced iteration of the initial o1 model, specifically crafted to address intricate and challenging tasks with increased dependability. This upgraded model showcases considerable enhancements compared to the earlier o1 preview, boasting a remarkable 34% decline in significant errors while also demonstrating a 50% increase in processing speed. It stands out in disciplines such as mathematics, physics, and programming, where it delivers thorough and precise solutions. Furthermore, the o1-pro is capable of managing multimodal inputs, such as text and images, and excels in complex reasoning tasks that necessitate profound analytical skills. Available through a ChatGPT Pro subscription, this model not only provides unlimited access but also offers improved functionalities for users seeking sophisticated AI support. In this way, users can leverage its advanced capabilities to solve a wider range of problems efficiently and effectively.
-
20
GPT-4 Turbo
OpenAI
$0.0200 per 1000 tokens 1 RatingThe GPT-4 model represents a significant advancement in AI, being a large multimodal system capable of handling both text and image inputs while producing text outputs, which allows it to tackle complex challenges with a level of precision unmatched by earlier models due to its extensive general knowledge and enhanced reasoning skills. Accessible through the OpenAI API for subscribers, GPT-4 is also designed for chat interactions, similar to gpt-3.5-turbo, while proving effective for conventional completion tasks via the Chat Completions API. This state-of-the-art version of GPT-4 boasts improved features such as better adherence to instructions, JSON mode, consistent output generation, and the ability to call functions in parallel, making it a versatile tool for developers. However, it is important to note that this preview version is not fully prepared for high-volume production use, as it has a limit of 4,096 output tokens. Users are encouraged to explore its capabilities while keeping in mind its current limitations. -
21
Phi-4-mini-reasoning
Microsoft
Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields. -
22
OpenAI o3-pro
OpenAI
$20 per 1 million tokensOpenAI’s o3-pro is a specialized, high-performance reasoning model designed to tackle complex analytical tasks with high precision. Available to ChatGPT Pro and Team subscribers, it replaces the older o1-pro model and brings enhanced capabilities for domains such as mathematics, scientific problem-solving, and coding. The model supports advanced features including real-time web search, file analysis, Python code execution, and visual input processing, enabling it to handle multifaceted professional and enterprise use cases. While o3-pro’s performance is exceptional in accuracy and instruction-following, it generally responds slower and does not support features like image generation or temporary chat sessions. Access to the model is priced at a premium rate, reflecting its advanced capabilities. Early evaluations show that o3-pro outperforms its predecessor in delivering clearer, more reliable results. OpenAI markets o3-pro as a dependable engine prioritizing depth of analysis over speed. This makes it an ideal tool for users requiring detailed reasoning and thorough problem-solving. -
23
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
24
Solar Mini
Upstage AI
$0.1 per 1M tokensSolar Mini is an advanced pre-trained large language model that matches the performance of GPT-3.5 while providing responses 2.5 times faster, all while maintaining a parameter count of under 30 billion. In December 2023, it secured the top position on the Hugging Face Open LLM Leaderboard by integrating a 32-layer Llama 2 framework, which was initialized with superior Mistral 7B weights, coupled with a novel method known as "depth up-scaling" (DUS) that enhances the model's depth efficiently without the need for intricate modules. Following the DUS implementation, the model undergoes further pretraining to restore and boost its performance, and it also includes instruction tuning in a question-and-answer format, particularly tailored for Korean, which sharpens its responsiveness to user prompts, while alignment tuning ensures its outputs align with human or sophisticated AI preferences. Solar Mini consistently surpasses rivals like Llama 2, Mistral 7B, Ko-Alpaca, and KULLM across a range of benchmarks, demonstrating that a smaller model can still deliver exceptional performance. This showcases the potential of innovative architectural strategies in the development of highly efficient AI models. -
25
FLUX.1 Krea
Krea
FreeFLUX.1 Krea [dev] is a cutting-edge, open-source diffusion transformer with 12 billion parameters, developed through the collaboration of Krea and Black Forest Labs, aimed at providing exceptional aesthetic precision and photorealistic outputs while avoiding the common “AI look.” This model is fully integrated into the FLUX.1-dev ecosystem and is built upon a foundational model (flux-dev-raw) that possesses extensive world knowledge. It utilizes a two-phase post-training approach that includes supervised fine-tuning on a carefully selected combination of high-quality and synthetic samples, followed by reinforcement learning driven by human feedback based on preference data to shape its stylistic outputs. Through the innovative use of negative prompts during pre-training, along with custom loss functions designed for classifier-free guidance and specific preference labels, it demonstrates substantial enhancements in quality with fewer than one million examples, achieving these results without the need for elaborate prompts or additional LoRA modules. This approach not only elevates the model's output but also sets a new standard in the field of AI-driven visual generation. -
26
Mixtral 8x7B
Mistral AI
FreeThe Mixtral 8x7B model is an advanced sparse mixture of experts (SMoE) system that boasts open weights and is released under the Apache 2.0 license. This model demonstrates superior performance compared to Llama 2 70B across various benchmarks while achieving inference speeds that are six times faster. Recognized as the leading open-weight model with a flexible licensing framework, Mixtral also excels in terms of cost-efficiency and performance. Notably, it competes with and often surpasses GPT-3.5 in numerous established benchmarks, highlighting its significance in the field. Its combination of accessibility, speed, and effectiveness makes it a compelling choice for developers seeking high-performing AI solutions. -
27
DeepSeek R1
DeepSeek
Free 1 RatingDeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains. -
28
Command A Reasoning
Cohere AI
Cohere’s Command A Reasoning stands as the company’s most sophisticated language model, specifically designed for complex reasoning tasks and effortless incorporation into AI agent workflows. This model exhibits outstanding reasoning capabilities while ensuring efficiency and controllability, enabling it to scale effectively across multiple GPU configurations and accommodating context windows of up to 256,000 tokens, which is particularly advantageous for managing extensive documents and intricate agentic tasks. Businesses can adjust the precision and speed of outputs by utilizing a token budget, which empowers a single model to adeptly address both precise and high-volume application needs. It serves as the backbone for Cohere’s North platform, achieving top-tier benchmark performance and showcasing its strengths in multilingual applications across 23 distinct languages. With an emphasis on safety in enterprise settings, the model strikes a balance between utility and strong protections against harmful outputs. Additionally, a streamlined deployment option allows the model to operate securely on a single H100 or A100 GPU, making private and scalable implementations more accessible. Ultimately, this combination of features positions Command A Reasoning as a powerful solution for organizations aiming to enhance their AI-driven capabilities. -
29
OLMo 2
Ai2
OLMo 2 represents a collection of completely open language models created by the Allen Institute for AI (AI2), aimed at giving researchers and developers clear access to training datasets, open-source code, reproducible training methodologies, and thorough assessments. These models are trained on an impressive volume of up to 5 trillion tokens and compete effectively with top open-weight models like Llama 3.1, particularly in English academic evaluations. A key focus of OLMo 2 is on ensuring training stability, employing strategies to mitigate loss spikes during extended training periods, and applying staged training interventions in the later stages of pretraining to mitigate weaknesses in capabilities. Additionally, the models leverage cutting-edge post-training techniques derived from AI2's Tülu 3, leading to the development of OLMo 2-Instruct models. To facilitate ongoing enhancements throughout the development process, an actionable evaluation framework known as the Open Language Modeling Evaluation System (OLMES) was created, which includes 20 benchmarks that evaluate essential capabilities. This comprehensive approach not only fosters transparency but also encourages continuous improvement in language model performance. -
30
NVIDIA Llama Nemotron
NVIDIA
The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems. -
31
OpenAI's o1 series introduces a new generation of AI models specifically developed to enhance reasoning skills. Among these models are o1-preview and o1-mini, which utilize an innovative reinforcement learning technique that encourages them to dedicate more time to "thinking" through various problems before delivering solutions. This method enables the o1 models to perform exceptionally well in intricate problem-solving scenarios, particularly in fields such as coding, mathematics, and science, and they have shown to surpass earlier models like GPT-4o in specific benchmarks. The o1 series is designed to address challenges that necessitate more profound cognitive processes, representing a pivotal advancement toward AI systems capable of reasoning in a manner similar to humans. As it currently stands, the series is still undergoing enhancements and assessments, reflecting OpenAI's commitment to refining these technologies further. The continuous development of the o1 models highlights the potential for AI to evolve and meet more complex demands in the future.
-
32
OpenAI o3
OpenAI
$2 per 1 million tokensOpenAI o3 is a cutting-edge AI model that aims to improve reasoning abilities by simplifying complex tasks into smaller, more digestible components. It shows remarkable advancements compared to earlier AI versions, particularly in areas such as coding, competitive programming, and achieving top results in math and science assessments. Accessible for general use, OpenAI o3 facilitates advanced AI-enhanced problem-solving and decision-making processes. The model employs deliberative alignment strategies to guarantee that its outputs adhere to recognized safety and ethical standards, positioning it as an invaluable resource for developers, researchers, and businesses in pursuit of innovative AI solutions. With its robust capabilities, OpenAI o3 is set to redefine the boundaries of artificial intelligence applications across various fields. -
33
QwQ-32B
Alibaba
FreeThe QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence. -
34
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
35
Falcon-40B
Technology Innovation Institute (TII)
FreeFalcon-40B is a causal decoder-only model consisting of 40 billion parameters, developed by TII and trained on 1 trillion tokens from RefinedWeb, supplemented with carefully selected datasets. It is distributed under the Apache 2.0 license. Why should you consider using Falcon-40B? This model stands out as the leading open-source option available, surpassing competitors like LLaMA, StableLM, RedPajama, and MPT, as evidenced by its ranking on the OpenLLM Leaderboard. Its design is specifically tailored for efficient inference, incorporating features such as FlashAttention and multiquery capabilities. Moreover, it is offered under a flexible Apache 2.0 license, permitting commercial applications without incurring royalties or facing restrictions. It's important to note that this is a raw, pretrained model and is generally recommended to be fine-tuned for optimal performance in most applications. If you need a version that is more adept at handling general instructions in a conversational format, you might want to explore Falcon-40B-Instruct as a potential alternative. -
36
AlphaCodium
Qodo
AlphaCodium is an innovative AI tool created by Qodo that focuses on enhancing coding through iterative and test-driven methodologies. By facilitating logical reasoning, testing, and code refinement, it aids large language models in boosting their accuracy. Unlike traditional prompt-based methods, AlphaCodium steers AI through a more structured flow, which enhances its ability to tackle intricate coding challenges, especially those that involve edge cases. This tool not only refines outputs through specific tests but also ensures that results are more dependable, thereby improving overall performance in coding tasks. Studies show that AlphaCodium significantly raises the success rates of models such as GPT-4o, OpenAI o1, and Sonnet-3.5. Additionally, it empowers developers by offering sophisticated solutions for challenging programming assignments, ultimately leading to greater efficiency in the software development process. By harnessing the power of structured guidance, AlphaCodium enables developers to tackle complex coding tasks with newfound confidence and competence. -
37
GPT-5 thinking
OpenAI
GPT-5 Thinking is a specialized reasoning component of the GPT-5 platform that activates when queries require deeper thought and complex problem-solving. Unlike the quick-response GPT-5 base model, GPT-5 Thinking carefully processes multifaceted questions, delivering richer and more precise answers. This enhanced reasoning mode excels in reducing factual errors and hallucinations by analyzing information more thoroughly and applying multi-step logic. It also improves transparency by clearly stating when certain tasks cannot be completed due to missing data or unsupported requests. Safety is a core focus, with GPT-5 Thinking trained to balance helpfulness and risk, especially in sensitive or dual-use scenarios. The model seamlessly switches between fast and deep thinking based on conversation complexity and user intent. With improved instruction following and reduced sycophancy, GPT-5 Thinking offers more natural, confident, and thoughtful interactions. It is accessible to all users as part of GPT-5’s unified system, enhancing both everyday productivity and expert applications. -
38
Qwen2.5-VL
Alibaba
FreeQwen2.5-VL marks the latest iteration in the Qwen vision-language model series, showcasing notable improvements compared to its predecessor, Qwen2-VL. This advanced model demonstrates exceptional capabilities in visual comprehension, adept at identifying a diverse range of objects such as text, charts, and various graphical elements within images. Functioning as an interactive visual agent, it can reason and effectively manipulate tools, making it suitable for applications involving both computer and mobile device interactions. Furthermore, Qwen2.5-VL is proficient in analyzing videos that are longer than one hour, enabling it to identify pertinent segments within those videos. The model also excels at accurately locating objects in images by creating bounding boxes or point annotations and supplies well-structured JSON outputs for coordinates and attributes. It provides structured data outputs for documents like scanned invoices, forms, and tables, which is particularly advantageous for industries such as finance and commerce. Offered in both base and instruct configurations across 3B, 7B, and 72B models, Qwen2.5-VL can be found on platforms like Hugging Face and ModelScope, further enhancing its accessibility for developers and researchers alike. This model not only elevates the capabilities of vision-language processing but also sets a new standard for future developments in the field. -
39
GLM-4.5
Z.ai
Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains. -
40
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models like GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have seen significant advancements in their capabilities, leading to a rise in their usage among individuals in both personal and professional contexts. Despite their growing popularity and integration into daily tasks, these models are not without their shortcomings, as they can sometimes disseminate inaccurate information, reinforce harmful stereotypes, and use inappropriate language. To effectively tackle these critical issues, it is essential for researchers and scholars to become actively involved in exploring these models further. However, conducting research on instruction-following models within academic settings has posed challenges due to the unavailability of models with comparable functionality to proprietary options like OpenAI’s text-DaVinci-003. In response to this gap, we are presenting our insights on an instruction-following language model named Alpaca, which has been fine-tuned from Meta’s LLaMA 7B model, aiming to contribute to the discourse and development in this field. This initiative represents a step towards enhancing the understanding and capabilities of instruction-following models in a more accessible manner for researchers. -
41
OpenAI o3-mini
OpenAI
The o3-mini by OpenAI is a streamlined iteration of the sophisticated o3 AI model, delivering robust reasoning skills in a more compact and user-friendly format. It specializes in simplifying intricate instructions into digestible steps, making it particularly adept at coding, competitive programming, and tackling mathematical and scientific challenges. This smaller model maintains the same level of accuracy and logical reasoning as the larger version, while operating with lower computational demands, which is particularly advantageous in environments with limited resources. Furthermore, o3-mini incorporates inherent deliberative alignment, promoting safe, ethical, and context-sensitive decision-making. Its versatility makes it an invaluable resource for developers, researchers, and enterprises striving for an optimal mix of performance and efficiency in their projects. The combination of these features positions o3-mini as a significant tool in the evolving landscape of AI-driven solutions. -
42
QwQ-Max-Preview
Alibaba
FreeQwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community. -
43
GPT-J
EleutherAI
FreeGPT-J represents an advanced language model developed by EleutherAI, known for its impressive capabilities. When it comes to performance, GPT-J showcases a proficiency that rivals OpenAI's well-known GPT-3 in various zero-shot tasks. Remarkably, it has even outperformed GPT-3 in specific areas, such as code generation. The most recent version of this model, called GPT-J-6B, is constructed using a comprehensive linguistic dataset known as The Pile, which is publicly accessible and consists of an extensive 825 gibibytes of language data divided into 22 unique subsets. Although GPT-J possesses similarities to ChatGPT, it's crucial to highlight that it is primarily intended for text prediction rather than functioning as a chatbot. In a notable advancement in March 2023, Databricks unveiled Dolly, a model that is capable of following instructions and operates under an Apache license, further enriching the landscape of language models. This evolution in AI technology continues to push the boundaries of what is possible in natural language processing. -
44
LongLLaMA
LongLLaMA
FreeThis repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing. -
45
Falcon 3
Technology Innovation Institute (TII)
FreeFalcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available.