Best dotData Alternatives in 2025
Find the top alternatives to dotData currently available. Compare ratings, reviews, pricing, and features of dotData alternatives in 2025. Slashdot lists the best dotData alternatives on the market that offer competing products that are similar to dotData. Sort through dotData alternatives below to make the best choice for your needs
-
1
Google Colab
Google
8 RatingsGoogle Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows. -
2
At Posit, we strive to enhance data science by making it more open, user-friendly, accessible, and collaborative for everyone. Our suite of tools empowers individuals, teams, and enterprises to utilize advanced analytics to derive meaningful insights and create a significant impact. From our inception, we have committed to open-source software, such as RStudio IDE, Shiny, and tidyverse, because we firmly believe in democratizing access to data science tools. We offer R and Python-based solutions designed to streamline the analysis process, enabling you to achieve higher-quality results in less time. Our platform facilitates secure sharing of data-science applications across your organization, reinforcing the idea that our code belongs to you. You can build upon it, share it, and use it to enhance the lives of others. By simplifying the processes of uploading, storing, accessing, and distributing your work, we aim to make your experience seamless. We are always excited to learn about the incredible projects being developed using our tools globally, and we cherish the opportunity to share those inspiring stories with the community. Ultimately, our mission is to foster a vibrant ecosystem where data science can flourish for everyone involved.
-
3
Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
-
4
Cloudera Data Science Workbench
Cloudera
Enhance the transition of machine learning from theoretical research to practical application with a seamless experience tailored for your conventional platform. Cloudera Data Science Workbench (CDSW) offers a user-friendly environment for data scientists, allowing them to work with Python, R, and Scala right in their web browsers. Users can download and explore the newest libraries and frameworks within customizable project settings that mirror the functionality of their local machines. CDSW ensures robust connectivity not only to CDH and HDP but also to the essential systems that support your data science teams in their analytical endeavors. Furthermore, Cloudera Data Science Workbench empowers data scientists to oversee their analytics pipelines independently, featuring integrated scheduling, monitoring, and email notifications. This platform enables rapid development and prototyping of innovative machine learning initiatives while simplifying the deployment process into a production environment. By streamlining these workflows, teams can focus on delivering impactful results more efficiently. -
5
Darwin
SparkCognition
$4000Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises. -
6
Bitfount
Bitfount
Bitfount serves as a collaborative platform for distributed data science, enabling deep collaborations without the need for data sharing. The innovative approach of distributed data science allows algorithms to be deployed directly to where the data resides, rather than moving the data itself. In just a few minutes, you can establish a federated network for privacy-preserving analytics and machine learning, freeing your team to concentrate on generating insights and fostering innovation rather than getting bogged down by bureaucratic processes. While your data team possesses the expertise needed to tackle significant challenges and drive innovation, they often face obstacles related to data accessibility. Are intricate data pipeline infrastructures disrupting your strategies? Is the compliance process taking an excessive amount of time? Bitfount offers a more effective solution to empower your data specialists. It enables the connection of disparate and multi-cloud datasets while maintaining privacy and honoring commercial confidentiality. Say goodbye to costly and time-consuming data migrations, as our platform provides usage-based access controls that guarantee teams can only conduct analyses on the data you permit. Moreover, the management of these access controls can be seamlessly transferred to the teams that actually manage the data, streamlining your operations and enhancing productivity. Ultimately, Bitfount aims to revolutionize the way organizations leverage their data assets for better outcomes. -
7
Kedro
Kedro
FreeKedro serves as a robust framework for establishing clean data science practices. By integrating principles from software engineering, it enhances the efficiency of machine-learning initiatives. Within a Kedro project, you will find a structured approach to managing intricate data workflows and machine-learning pipelines. This allows you to minimize the time spent on cumbersome implementation tasks and concentrate on addressing innovative challenges. Kedro also standardizes the creation of data science code, fostering effective collaboration among team members in problem-solving endeavors. Transitioning smoothly from development to production becomes effortless with exploratory code that can evolve into reproducible, maintainable, and modular experiments. Additionally, Kedro features a set of lightweight data connectors designed to facilitate the saving and loading of data across various file formats and storage systems, making data management more versatile and user-friendly. Ultimately, this framework empowers data scientists to work more effectively and with greater confidence in their projects. -
8
NVIDIA RAPIDS
NVIDIA
The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible. -
9
ZinkML
ZinkML Technologies
ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions. -
10
Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
-
11
FutureAnalytica
FutureAnalytica
Introducing the world’s pioneering end-to-end platform designed for all your AI-driven innovation requirements—from data cleansing and organization to the creation and deployment of sophisticated data science models, as well as the integration of advanced analytics algorithms featuring built-in Recommendation AI; our platform also simplifies outcome interpretation with intuitive visualization dashboards and employs Explainable AI to trace the origins of outcomes. FutureAnalytica delivers a comprehensive, seamless data science journey, equipped with essential attributes such as a powerful Data Lakehouse, an innovative AI Studio, an inclusive AI Marketplace, and a top-notch data science support team available as needed. This unique platform is specifically tailored to streamline your efforts, reduce costs, and save time throughout your data science and AI endeavors. Start by engaging with our leadership team, and expect a swift technology evaluation within just 1 to 3 days. In a span of 10 to 18 days, you can construct fully automated, ready-to-integrate AI solutions using FutureAnalytica’s advanced platform, paving the way for a transformative approach to data management and analysis. Embrace the future of AI innovation with us today! -
12
Oracle Data Science
Oracle
A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making. -
13
Domino Enterprise MLOps Platform
Domino Data Lab
1 RatingThe Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
14
KNIME Analytics Platform
KNIME
Two complementary tools, one enterprise-grade platform. Open source KNIME Analytics Platform to create data science. Commercial KNIME Server to produce data science. KNIME Analytics Platform is an open-source software that creates data science. KNIME is intuitive, open, and constantly integrating new developments. It makes data science and designing data science workflows as easy as possible. KNIME Server Enterprise Software is used to facilitate team-based collaboration, automation, and management of data science workflows, as well as the deployment and management of analytical applications and services. Non-experts have access to KNIME WebPortal and REST APIs. Extensions for KNIME Analytics Platform allow you to do more with your data. Some are created and maintained by KNIME, while others are contributed by the community or our trusted partners. Integrations are also available with many open-source projects. -
15
TetraScience
TetraScience
Enhance your scientific research and equip your R&D team with unified data in the cloud. The Tetra R&D Data Cloud merges the only cloud-native data platform specifically designed for global pharmaceutical enterprises with the expansive and rapidly growing network of Life Sciences integrations and extensive industry expertise, providing a robust solution for leveraging your most critical asset: R&D data. This platform encompasses the entire life-cycle of your R&D data, facilitating processes from acquisition to harmonization, engineering, and subsequent analysis while offering native compatibility with cutting-edge data science tools. It supports a vendor-agnostic approach with pre-existing integrations that allow seamless connectivity to instruments, analytics and informatics applications, as well as ELN/LIMS and CRO/CDMOs. By consolidating data acquisition, management, harmonization, integration/engineering, and data science enablement into one comprehensive platform, it simplifies the complexities of R&D operations. This holistic approach not only streamlines workflows but also unlocks new possibilities for innovation and discovery. -
16
Wolfram Data Science Platform
Wolfram
The Wolfram Data Science Platform provides the ability to work with both structured and unstructured data, whether it is static or streaming in real-time. By leveraging the capabilities of WDF alongside the same linguistic framework found in Wolfram|Alpha, users can transform unstructured data into a structured format through either automated processes or guided assistance for disambiguation and destructuring. This platform employs advanced database connection technologies to integrate content from various databases into its versatile symbolic representation. Able to natively interpret hundreds of data formats, the Wolfram Data Science Platform facilitates conversion across diverse data types. It accommodates a wide range of data types, including images, text, networks, geometry, sounds, and GIS data, among others. Utilizing the innovative symbolic data representation inherent in the Wolfram Language, the platform can effortlessly manage both SQL-style and NoSQL data structures. Additionally, the Wolfram Data Science Platform automatically generates a comprehensive interactive report, applying algorithms that identify and visualize key features of the dataset, making data analysis more intuitive and informative. This feature-rich environment empowers users to extract deeper insights from their data effectively. -
17
Metaflow
Metaflow
Data science projects achieve success when data scientists possess the ability to independently create, enhance, and manage comprehensive workflows while prioritizing their data science tasks over engineering concerns. By utilizing Metaflow alongside popular data science libraries like TensorFlow or SciKit Learn, you can write your models in straightforward Python syntax without needing to learn much that is new. Additionally, Metaflow supports the R programming language, broadening its usability. This tool aids in designing workflows, scaling them effectively, and deploying them into production environments. It automatically versions and tracks all experiments and data, facilitating easy inspection of results within notebooks. With tutorials included, newcomers can quickly familiarize themselves with the platform. You even have the option to duplicate all tutorials right into your current directory using the Metaflow command line interface, making it a seamless process to get started and explore further. As a result, Metaflow not only simplifies complex tasks but also empowers data scientists to focus on impactful analyses. -
18
Incorporate analytics into immediate interactions and event-driven functionalities. The SAS Visual Data Science Decisioning suite offers strong capabilities in data management, visualization, advanced analytics, and model oversight. It enhances decision-making by crafting, integrating, and governing analytically driven decision processes at scale, whether in real-time or through batch processing. Additionally, it facilitates analytics deployment in the data stream to uncover valuable insights. Tackle intricate analytical challenges with an intuitive visual interface that manages all stages of the analytics life cycle efficiently. Running on SAS® Viya®, SAS Visual Data Mining and Machine Learning merges data manipulation, exploration, feature development, and cutting-edge statistical, data mining, and machine learning methodologies within a single, scalable in-memory processing framework. Users can access data files, libraries, and existing scripts, or create new ones, via this web-based application that is conveniently accessible through any browser, thus enhancing flexibility and collaboration.
-
19
Vectice
Vectice
Empowering all AI and machine learning initiatives within enterprises to yield reliable and beneficial outcomes is crucial. Data scientists require a platform that guarantees reproducibility for their experiments, ensures discoverability of every asset, and streamlines the transfer of knowledge. Meanwhile, managers need a specialized data science solution to safeguard knowledge, automate reporting tasks, and simplify review processes. Vectice aims to transform the operational dynamics of data science teams and enhance their collaboration. The ultimate objective is to foster a consistent and advantageous impact of AI and ML across various organizations. Vectice is introducing the first automated knowledge solution that is not only cognizant of data science but also actionable and seamlessly integrates with the tools utilized by data scientists. The platform automatically captures all assets generated by AI and ML teams, including datasets, code, notebooks, models, and runs, while also creating comprehensive documentation that spans from business requirements to production deployments, ensuring that every aspect of the workflow is covered efficiently. This innovative approach allows organizations to maximize their data science potential and drive meaningful results. -
20
Zerve AI
Zerve AI
By combining the advantages of a notebook with the functionality of an IDE, experts are empowered to analyze data while simultaneously developing reliable code, all supported by a fully automated cloud infrastructure. Zerve revolutionizes the data science development environment, providing teams focused on data science and machine learning with a cohesive platform to explore, collaborate, construct, and deploy their AI projects like never before. This innovative tool ensures true language interoperability, allowing users to seamlessly integrate Python, R, SQL, or Markdown within the same workspace, facilitating the connection of various code blocks. Zerve eliminates the frustrations of lengthy code execution or cumbersome containers by enabling unlimited parallel processing throughout the entire development process. Furthermore, artifacts generated during analysis are automatically serialized, versioned, stored, and preserved, making it simple to modify any step in the data pipeline without the need to reprocess earlier stages. Users also benefit from precise control over computing resources and additional memory, which is essential for handling intricate data transformations. With Zerve, data science teams can enhance their workflow efficiency and streamline project management significantly. -
21
FeatureByte
FeatureByte
FeatureByte acts as your AI data scientist, revolutionizing the entire data lifecycle so that processes that previously required months can now be accomplished in mere hours. It is seamlessly integrated with platforms like Databricks, Snowflake, BigQuery, or Spark, automating tasks such as feature engineering, ideation, cataloging, creating custom UDFs (including transformer support), evaluation, selection, historical backfill, deployment, and serving—whether online or in batch—all within a single, cohesive platform. The GenAI-inspired agents from FeatureByte collaborate with data, domain, MLOps, and data science experts to actively guide teams through essential processes like data acquisition, ensuring quality, generating features, creating models, orchestrating deployments, and ongoing monitoring. Additionally, FeatureByte offers an SDK and an intuitive user interface that facilitate both automated and semi-automated feature ideation, customizable pipelines, cataloging, lineage tracking, approval workflows, role-based access control, alerts, and version management, which collectively empower teams to rapidly and reliably construct, refine, document, and serve features. This comprehensive solution not only enhances efficiency but also ensures that teams can adapt to changing data requirements and maintain high standards in their data operations. -
22
Predictive modeling utilizing machine learning and explainable AI is revolutionized by FICO® Analytics Workbench™, a comprehensive collection of advanced analytic authoring tools that enables organizations to enhance their business decisions throughout the customer journey. This platform allows data scientists to develop exceptional decision-making abilities by leveraging an extensive variety of predictive modeling tools and algorithms, incorporating cutting-edge machine learning and explainable AI techniques. By merging the strengths of open-source data science with FICO's proprietary innovations, we provide unparalleled analytic capabilities to uncover, integrate, and implement predictive insights from data. Additionally, the Analytics Workbench is constructed on the robust FICO® Platform, facilitating the seamless deployment of new predictive models and strategies into operational environments, thereby driving efficiency and effectiveness in business processes. Ultimately, this empowers companies to make informed, data-driven decisions that can significantly impact their success.
-
23
Algopine
Algopine
We specialize in creating, overseeing, and operating predictive software solutions that utilize data science and machine learning technologies. Our services cater to sizable e-commerce companies and retail chains, employing machine learning techniques to accurately predict sales and enhance stock distribution across various retail locations and warehouses. We also offer a personalized product recommendation system for online retailers that leverages real-time Bayesian networks to present visitors with tailored product suggestions. Additionally, our software automatically recommends price adjustments aimed at maximizing profits by applying statistical models of price and demand elasticity. Moreover, we provide an API designed to calculate optimal routing for batch picking processes in a retailer’s warehouse, utilizing advanced shortest path graph algorithms for efficiency improvements. By integrating these innovative tools, we empower businesses to make data-driven decisions that enhance overall operational performance. -
24
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
25
Key Ward
Key Ward
€9,000 per yearEffortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors. -
26
NVIDIA Merlin
NVIDIA
NVIDIA Merlin equips data scientists, ML engineers, and researchers with the tools necessary to create scalable, high-performance recommendation systems. This suite includes libraries, methodologies, and various tools that simplify the process of building recommenders by tackling prevalent issues related to preprocessing, feature engineering, training, inference, and production deployment. Optimized components within Merlin facilitate the retrieval, filtering, scoring, and organization of vast data sets, often reaching hundreds of terabytes, all accessed via user-friendly APIs. The implementation of Merlin enables enhanced predictions, improved click-through rates, and quicker production deployment, making it an essential resource for professionals. As a part of NVIDIA AI, Merlin exemplifies the company's dedication to empowering innovative practitioners in their work. Furthermore, this comprehensive solution is crafted to seamlessly integrate with existing recommender systems that leverage both data science and machine learning techniques, ensuring that users can build on their current workflows effectively. -
27
MLJAR Studio
MLJAR
$20 per monthThis desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science. -
28
Analance
Ducen
Analance is a comprehensive and scalable solution that integrates Data Science, Advanced Analytics, Business Intelligence, and Data Management into one seamless, self-service platform. Designed to empower users with essential analytical capabilities, it ensures that data insights are readily available to all, maintains consistent performance as user demands expand, and meets ongoing business goals within a singular framework. Analance is dedicated to transforming high-quality data into precise predictions, providing both seasoned data scientists and novice users with intuitive, point-and-click pre-built algorithms alongside a flexible environment for custom coding. By bridging the gap between advanced analytics and user accessibility, Analance facilitates informed decision-making across organizations. Company – Overview Ducen IT supports Business and IT professionals in Fortune 1000 companies by offering advanced analytics, business intelligence, and data management through its distinctive, all-encompassing data science platform known as Analance. -
29
Datatron
Datatron
Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions. -
30
Outerbounds
Outerbounds
Create and execute data-heavy projects using the user-friendly, open-source Metaflow framework. The Outerbounds platform offers a completely managed environment to run, scale, and deploy these projects with reliability. It serves as a comprehensive solution for all your machine learning and data science endeavors. You can securely access data from your current data warehouses and utilize a computing cluster that is tailored for both scalability and cost-effectiveness. With 24/7 managed orchestration, production workflows are streamlined and efficient. Results can be leveraged to enhance any application, empowering your data scientists while receiving approval from engineers. The Outerbounds Platform enables rapid development, large-scale experimentation, and confident production deployment, all while adhering to the policies set by your engineers and operating securely within your cloud account. Security is fundamentally integrated into our platform rather than being an afterthought. It meets your compliance needs through various layers of security measures, including centralized authentication, a strict permission framework, and clearly defined roles for task execution, ensuring that your data and processes remain safe. This cohesive structure allows teams to collaborate effectively while maintaining control over their data environment. -
31
Create and resolve intricate optimization models to determine the most effective strategies. IBM® ILOG® CPLEX® Optimization Studio leverages decision optimization technology to enhance your business choices, allowing for swift model development and deployment while crafting practical applications that can markedly boost business performance. How does it achieve this? This platform serves as a prescriptive analytics tool that facilitates the quick creation and implementation of decision optimization models utilizing mathematical and constraint programming techniques. It features a comprehensive integrated development environment that supports Optimization Programming Language (OPL) along with the powerful CPLEX and CP Optimizer solvers. Essentially, it transforms data science into actionable decisions. Additionally, IBM Decision Optimization is incorporated within Cloud Pak for Data, enabling the fusion of optimization and machine learning within a cohesive framework, IBM Watson® Studio, which offers capabilities for AI-enhanced optimization modeling. This combination not only accelerates decision-making but also optimizes operational efficiency across various business sectors.
-
32
IBM Analytics for Apache Spark offers a versatile and cohesive Spark service that enables data scientists to tackle ambitious and complex inquiries while accelerating the achievement of business outcomes. This user-friendly, continually available managed service comes without long-term commitments or risks, allowing for immediate exploration. Enjoy the advantages of Apache Spark without vendor lock-in, supported by IBM's dedication to open-source technologies and extensive enterprise experience. With integrated Notebooks serving as a connector, the process of coding and analytics becomes more efficient, enabling you to focus more on delivering results and fostering innovation. Additionally, this managed Apache Spark service provides straightforward access to powerful machine learning libraries, alleviating the challenges, time investment, and risks traditionally associated with independently managing a Spark cluster. As a result, teams can prioritize their analytical goals and enhance their productivity significantly.
- 33
-
34
Azure Data Science Virtual Machines
Microsoft
$0.005DSVMs, or Data Science Virtual Machines, are pre-configured Azure Virtual Machine images equipped with a variety of widely-used tools for data analysis, machine learning, and AI training. They ensure a uniform setup across teams, encouraging seamless collaboration and sharing of resources while leveraging Azure's scalability and management features. Offering a near-zero setup experience, these VMs provide a fully cloud-based desktop environment tailored for data science applications. They facilitate rapid and low-friction deployment suitable for both classroom settings and online learning environments. Users can execute analytics tasks on diverse Azure hardware configurations, benefiting from both vertical and horizontal scaling options. Moreover, the pricing structure allows individuals to pay only for the resources they utilize, ensuring cost-effectiveness. With readily available GPU clusters that come pre-configured for deep learning tasks, users can hit the ground running. Additionally, the VMs include various examples, templates, and sample notebooks crafted or validated by Microsoft, which aids in the smooth onboarding process for numerous tools and capabilities, including but not limited to Neural Networks through frameworks like PyTorch and TensorFlow, as well as data manipulation using R, Python, Julia, and SQL Server. This comprehensive package not only accelerates the learning curve for newcomers but also enhances productivity for seasoned data scientists. -
35
Peak
Peak
Introducing a groundbreaking decision intelligence platform that empowers business leaders to enhance their decision-making processes. Our Connected Decision Intelligence system, known as CODI, has been meticulously designed by Peak to act as an intelligence layer, bridging the gap between various systems and unlocking the potential of your data like never before. CODI allows for the swift implementation of AI solutions, tapping into the full capabilities of your data through its distinctive full-stack functionalities. It empowers data scientists and engineers to take charge of all facets involved in creating and deploying AI applications, efficiently and on a large scale. By utilizing CODI, AI initiatives evolve from mere trials into fully operational solutions that yield tangible benefits and outcomes. Constructed on a robust enterprise-grade infrastructure, CODI can manage extensive data sets and integrates effortlessly with pre-existing technology ecosystems. Furthermore, it allows for deeper insights and the integration of data sourced from all corners of your organization, ultimately driving improved strategies and performance. This innovative approach ensures that organizations can make informed decisions backed by comprehensive data analysis. -
36
Develop, implement, and manage data-driven decision-making processes on a large scale in either real-time or batch modes. SAS Data Science Programming caters to data scientists who prefer a purely programmatic method, allowing them to utilize SAS's analytical tools throughout the entire analytics life cycle, which encompasses data preparation, exploration, and deployment. Uncover and visualize significant patterns within your datasets, enabling the creation and dissemination of interactive reports and dashboards. Additionally, leverage self-service analytics to swiftly evaluate likely outcomes, leading to more informed and data-centric decisions. Engage with your data and create or modify predictive analytical models using the SAS® Viya® platform. This collaborative environment empowers data scientists, statisticians, and analysts to work together, refining their models iteratively for various segments, ultimately supporting decision-making based on reliable insights. Tackle intricate analytical challenges through an all-encompassing visual interface that efficiently manages every aspect of the analytics life cycle, ensuring that users can navigate complexities with ease and precision. By embracing this approach, organizations can enhance their strategic decision-making capabilities significantly.
-
37
Pyramid Analytics
Pyramid Analytics
Decision intelligence aims to empower employees with the ability to make faster, more informed decisions that will allow them to take corrective steps, capitalize on opportunities, and drive innovation. The data and analytics platform that is purpose-built to help enterprises make better, faster decisions. A new type of engine drives it. Streamlining the entire analysis workflow. One platform for all data, any person, and any analytics needs. This is the future for intelligent decisions. This new platform combines data preparation, data science, and business analytics into one integrated platform. Streamline all aspects of decision-making. Everything from discovery to publishing to modeling is interconnected (and easy-to-use). It can be run at hyper-scale to support any data-driven decision. Advanced data science is available for all business needs, from the C-Suite to frontline. -
38
Data Science Dojo
Data Science Dojo
Our data science courses are available online or in person. Experienced instructors will teach you data analysis, machine learning, and big data. Data Science Dojo is a globally recognized online learning platform that teaches students data science, machine learning, data analytics and more. Our programs are available in three popular formats: virtual instructor-led training, in-person training, and self-paced learning. You can select the learning style which suits you best! Our focus is to help students develop a business-first mindset from the beginning so that they can apply their data science skills effectively in a real world context. Enroll in our highly rated data science program and learn the practical skills needed to succeed in this field. -
39
INQDATA
INQDATA
A cloud-based data science platform provides meticulously curated and refined data, primed for immediate use. Companies encounter considerable hurdles, limited resources, and elevated expenses when handling their data before they can extract any meaningful insights. The data undergoes a process of ingestion, cleansing, storage, and access, culminating in analysis, which is where true value is derived. Our solution empowers clients to concentrate on their primary business functions instead of the costly, resource-intensive data lifecycle, as we manage those complexities for them. Additionally, our cloud-native platform supports real-time streaming analytics, capitalizing on the advantages of cloud architecture, allowing INQDATA to deliver swift and scalable access to both historical and real-time data while eliminating infrastructure complexities. This approach not only enhances efficiency but also ensures that businesses can adapt quickly to their evolving data needs. -
40
Solvuu
Solvuu
A platform designed for life scientists focusing on data science. Transform your microbiome investigations into actionable insights and expedite the introduction of innovative, safe, and efficient products to the marketplace. By integrating appropriate data science methodologies and collaborative tools, you can achieve swift progress in cancer treatment advancements. Enhance your research efforts, foster innovation, and create substantial value through the implementation of effective digital technologies that enhance agricultural output. You can easily import both small and large datasets, organizing them using our provided templates or customizing your own structure. Our format inference technology generates parsing functions while allowing you to make adjustments without any coding required. Utilize our user-friendly import interfaces or command-line tools for bulk data uploads. Your information represents more than mere data points; Solvuu automatically provides pertinent summary statistics and produces engaging, interactive visualizations. Dive deep into your data for immediate insights and manipulate it freely as necessary, ensuring a thorough understanding of your research findings. With this platform, you will efficiently harness the power of your data for impactful results. -
41
Brilent
Brilent
Brilent is an innovative tech firm specializing in data science that has created a SaaS platform aimed at assisting talent seekers in swiftly and effectively pinpointing the ideal candidates for employment. What makes this intelligent technology particularly appealing is its straightforwardness, devoid of any gimmicks. It relies on elements that recruiters consider crucial. Central to the Brilent engine are three fundamental components: the job specifications, the candidate profiles, and our distinctive database of market information. Following this, the engaging part unfolds. Our system compiles all pertinent information from both job requirements and candidate profiles. By utilizing numerous variables derived from these well-known recruiting elements alongside market data, we apply our extensive expertise in artificial intelligence and machine learning to assess the likelihood of a candidate being a suitable match for a specific role. In essence, it involves substantial data analysis that is completed in mere seconds. Consequently, recruiters receive a ranked list of candidates based on the specified criteria, enabling them to make informed hiring decisions with greater efficiency. This approach not only streamlines the recruitment process but also enhances the overall quality of hires. -
42
IBM SPSS Modeler
IBM
IBM SPSS Modeler, a leading visual data-science and machine-learning (ML) solution, is designed to help enterprises accelerate their time to value through the automation of operational tasks by data scientists. It is used by organizations around the world for data preparation, discovery, predictive analytics and model management and deployment. ML is also used to monetize data assets. IBM SPSS Modeler transforms data in the best possible format for accurate predictive modeling. You can now analyze data in just a few clicks, identify fixes, screen fields out and derive new characteristics. IBM SPSS Modeler uses its powerful graphics engine to help you bring your insights to life. The smart chart recommender will select the best chart from dozens of options to share your insights. -
43
Einblick
Einblick
$9 per monthEinblick offers a swift and highly collaborative platform for data exploration, prediction generation, and application deployment. Our innovative canvases transform the data science process by simplifying the exploration, cleaning, and manipulation of data through a user-friendly interface. Unlike other platforms, we enable real-time collaboration among your entire team, emphasizing that collective decision-making is essential. Stop spending time on manual model adjustments; our AutoML feature is designed to facilitate the creation of transparent predictions and pinpoint crucial influencing factors effortlessly. Einblick also streamlines common analytics tasks into user-friendly operators, allowing you to minimize repetitive work and reach conclusions more quickly. Whether your data resides in Snowflake, S3 buckets, or CSV files, you can connect your data source and start drawing insights in no time. For instance, by analyzing a list of churned and active customers, you can integrate all relevant information about them, revealing the primary reasons for churn and assessing the risk level for each customer effectively. Moreover, our platform empowers teams to make data-driven decisions with confidence, ensuring that insights are accessible and actionable for everyone involved. -
44
Access, analyze, and manipulate data to uncover emerging trends and patterns effectively. SAS Visual Data Science provides a unified, self-service platform that enables the creation and sharing of intelligent visualizations alongside interactive reports. Leveraging machine learning, text analytics, and econometric techniques enhances forecasting and optimization capabilities, while also allowing for the management and registration of both SAS and open-source models, whether within projects or as independent entities. Utilize this tool to visualize and identify pertinent relationships within your data. Generate and disseminate interactive reports and dashboards, employing self-service analytics to promptly evaluate potential outcomes for more informed, data-driven decisions. Dive into data exploration and construct or modify predictive analytical models using this solution integrated with SAS® Viya®. By fostering collaboration among data scientists, statisticians, and analysts, teams can iteratively refine models tailored to specific segments or groups, thereby empowering decisions rooted in precise insights. This collaborative approach not only enhances model accuracy but also accelerates the decision-making process significantly.
-
45
HyperCube
BearingPoint
No matter what your business requirements are, quickly unearth concealed insights with HyperCube, a platform tailored to meet the needs of data scientists. Harness your business data effectively to gain clarity, identify untapped opportunities, make forecasts, and mitigate risks before they arise. HyperCube transforms vast amounts of data into practical insights. Whether you're just starting with analytics or are a seasoned machine learning specialist, HyperCube is thoughtfully crafted to cater to your needs. It serves as the multifaceted tool of data science, integrating both proprietary and open-source code to provide a diverse array of data analysis capabilities, available either as ready-to-use applications or tailored business solutions. We are committed to continuously enhancing our technology to offer you the most cutting-edge, user-friendly, and flexible outcomes. You can choose from a variety of applications, data-as-a-service (DaaS), and tailored solutions for specific industries, ensuring that your unique requirements are met efficiently. With HyperCube, unlocking the full potential of your data has never been more accessible.