Best definity Alternatives in 2026
Find the top alternatives to definity currently available. Compare ratings, reviews, pricing, and features of definity alternatives in 2026. Slashdot lists the best definity alternatives on the market that offer competing products that are similar to definity. Sort through definity alternatives below to make the best choice for your needs
-
1
Dataform
Google
FreeDataform provides a platform for data analysts and engineers to create and manage scalable data transformation pipelines in BigQuery using solely SQL from a single, integrated interface. The open-source core language allows teams to outline table structures, manage dependencies, include column descriptions, and establish data quality checks within a collective code repository, all while adhering to best practices in software development, such as version control, various environments, testing protocols, and comprehensive documentation. A fully managed, serverless orchestration layer seamlessly oversees workflow dependencies, monitors data lineage, and executes SQL pipelines either on demand or on a schedule through tools like Cloud Composer, Workflows, BigQuery Studio, or external services. Within the browser-based development interface, users can receive immediate error notifications, visualize their dependency graphs, link their projects to GitHub or GitLab for version control and code reviews, and initiate high-quality production pipelines in just minutes without exiting BigQuery Studio. This efficiency not only accelerates the development process but also enhances collaboration among team members. -
2
Cribl Stream
Cribl
Free (1TB /Day) Cribl Stream allows you create an observability pipeline that helps you parse and restructure data in flight before you pay to analyze it. You can get the right data in the format you need, at the right place and in the format you want. Translate and format data into any tooling scheme you need to route data to the right tool for the job or all of the job tools. Different departments can choose different analytics environments without the need to deploy new forwarders or agents. Log and metric data can go unused up to 50%. This includes duplicate data, null fields, and fields with zero analytical value. Cribl Stream allows you to trim waste data streams and only analyze what you need. Cribl Stream is the best way for multiple data formats to be integrated into trusted tools that you use for IT and Security. Cribl Stream universal receiver can be used to collect data from any machine source - and to schedule batch collection from REST APIs (Kinesis Firehose), Raw HTTP and Microsoft Office 365 APIs. -
3
Datavolo
Datavolo
$36,000 per yearGather all your unstructured data to meet your LLM requirements effectively. Datavolo transforms single-use, point-to-point coding into rapid, adaptable, reusable pipelines, allowing you to concentrate on what truly matters—producing exceptional results. As a dataflow infrastructure, Datavolo provides you with a significant competitive advantage. Enjoy swift, unrestricted access to all your data, including the unstructured files essential for LLMs, thereby enhancing your generative AI capabilities. Experience pipelines that expand alongside you, set up in minutes instead of days, without the need for custom coding. You can easily configure sources and destinations at any time, while trust in your data is ensured, as lineage is incorporated into each pipeline. Move beyond single-use pipelines and costly configurations. Leverage your unstructured data to drive AI innovation with Datavolo, which is supported by Apache NiFi and specifically designed for handling unstructured data. With a lifetime of experience, our founders are dedicated to helping organizations maximize their data's potential. This commitment not only empowers businesses but also fosters a culture of data-driven decision-making. -
4
Kestra
Kestra
Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified. -
5
Apache Airflow
The Apache Software Foundation
Airflow is a community-driven platform designed for the programmatic creation, scheduling, and monitoring of workflows. With its modular architecture, Airflow employs a message queue to manage an unlimited number of workers, making it highly scalable. The system is capable of handling complex operations through its ability to define pipelines using Python, facilitating dynamic pipeline generation. This flexibility enables developers to write code that can create pipelines on the fly. Users can easily create custom operators and expand existing libraries, tailoring the abstraction level to meet their specific needs. The pipelines in Airflow are both concise and clear, with built-in parametrization supported by the robust Jinja templating engine. Eliminate the need for complex command-line operations or obscure XML configurations! Instead, leverage standard Python functionalities to construct workflows, incorporating date-time formats for scheduling and utilizing loops for the dynamic generation of tasks. This approach ensures that you retain complete freedom and adaptability when designing your workflows, allowing you to efficiently respond to changing requirements. Additionally, Airflow's user-friendly interface empowers teams to collaboratively refine and optimize their workflow processes. -
6
Pantomath
Pantomath
Organizations are increasingly focused on becoming more data-driven, implementing dashboards, analytics, and data pipelines throughout the contemporary data landscape. However, many organizations face significant challenges with data reliability, which can lead to misguided business decisions and a general mistrust in data that negatively affects their financial performance. Addressing intricate data challenges is often a labor-intensive process that requires collaboration among various teams, all of whom depend on informal knowledge to painstakingly reverse engineer complex data pipelines spanning multiple platforms in order to pinpoint root causes and assess their implications. Pantomath offers a solution as a data pipeline observability and traceability platform designed to streamline data operations. By continuously monitoring datasets and jobs within the enterprise data ecosystem, it provides essential context for complex data pipelines by generating automated cross-platform technical pipeline lineage. This automation not only enhances efficiency but also fosters greater confidence in data-driven decision-making across the organization. -
7
GlassFlow
GlassFlow
$350 per monthGlassFlow is an innovative, serverless platform for building event-driven data pipelines, specifically tailored for developers working with Python. It allows users to create real-time data workflows without the complexities associated with traditional infrastructure solutions like Kafka or Flink. Developers can simply write Python functions to specify data transformations, while GlassFlow takes care of the infrastructure, providing benefits such as automatic scaling, low latency, and efficient data retention. The platform seamlessly integrates with a variety of data sources and destinations, including Google Pub/Sub, AWS Kinesis, and OpenAI, utilizing its Python SDK and managed connectors. With a low-code interface, users can rapidly set up and deploy their data pipelines in a matter of minutes. Additionally, GlassFlow includes functionalities such as serverless function execution, real-time API connections, as well as alerting and reprocessing features. This combination of capabilities makes GlassFlow an ideal choice for Python developers looking to streamline the development and management of event-driven data pipelines, ultimately enhancing their productivity and efficiency. As the data landscape continues to evolve, GlassFlow positions itself as a pivotal tool in simplifying data processing workflows. -
8
Arcion
Arcion Labs
$2,894.76 per monthImplement production-ready change data capture (CDC) systems for high-volume, real-time data replication effortlessly, without writing any code. Experience an enhanced Change Data Capture process with Arcion, which provides automatic schema conversion, comprehensive data replication, and various deployment options. Benefit from Arcion's zero data loss architecture that ensures reliable end-to-end data consistency alongside integrated checkpointing, all without requiring any custom coding. Overcome scalability and performance challenges with a robust, distributed architecture that enables data replication at speeds ten times faster. Minimize DevOps workload through Arcion Cloud, the only fully-managed CDC solution available, featuring autoscaling, high availability, and an intuitive monitoring console. Streamline and standardize your data pipeline architecture while facilitating seamless, zero-downtime migration of workloads from on-premises systems to the cloud. This innovative approach not only enhances efficiency but also significantly reduces the complexity of managing data replication processes. -
9
Adele
Adastra
Adele is a user-friendly platform that streamlines the process of transferring data pipelines from outdated systems to a designated target platform. It gives users comprehensive control over the migration process, and its smart mapping features provide crucial insights. By reverse-engineering existing data pipelines, Adele generates data lineage maps and retrieves metadata, thereby improving transparency and comprehension of data movement. This approach not only facilitates the migration but also fosters a deeper understanding of the data landscape within organizations. -
10
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
11
Lyftrondata
Lyftrondata
If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy. -
12
Stripe Data Pipeline
Stripe
3¢ per transactionThe Stripe Data Pipeline efficiently transfers your current Stripe data and reports to either Snowflake or Amazon Redshift with just a few clicks. By consolidating your Stripe data alongside other business information, you can expedite your accounting processes and achieve deeper insights into your operations. Setting up the Stripe Data Pipeline takes only a few minutes, after which your Stripe data and reports will be automatically sent to your data warehouse regularly—no coding skills are necessary. This creates a unified source of truth, enhancing the speed of your financial closing while providing improved analytical capabilities. You can easily pinpoint your top-performing payment methods and investigate fraud patterns based on location, among other analyses. The pipeline allows you to send your Stripe data straight to your data warehouse, eliminating the need for a third-party extract, transform, and load (ETL) process. Additionally, you can relieve yourself of the burden of ongoing maintenance with a pipeline that is inherently integrated with Stripe. Regardless of the volume of data, you can trust that it will remain complete and accurate. This automation of data delivery at scale helps in reducing security vulnerabilities and prevents potential data outages and delays, ensuring smooth operations. Ultimately, this solution empowers businesses to leverage their data more effectively and make informed decisions swiftly. -
13
IBM StreamSets
IBM
$1000 per monthIBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations. -
14
DataKitchen
DataKitchen
You can regain control over your data pipelines and instantly deliver value without any errors. DataKitchen™, DataOps platforms automate and coordinate all people, tools and environments within your entire data analytics organization. This includes everything from orchestration, testing and monitoring, development, and deployment. You already have the tools you need. Our platform automates your multi-tool, multienvironment pipelines from data access to value delivery. Add automated tests to every node of your production and development pipelines to catch costly and embarrassing errors before they reach the end user. In minutes, you can create repeatable work environments that allow teams to make changes or experiment without interrupting production. With a click, you can instantly deploy new features to production. Your teams can be freed from the tedious, manual work that hinders innovation. -
15
Integrate.io
Integrate.io
Unify Your Data Stack: Experience the first no-code data pipeline platform and power enlightened decision making. Integrate.io is the only complete set of data solutions & connectors for easy building and managing of clean, secure data pipelines. Increase your data team's output with all of the simple, powerful tools & connectors you’ll ever need in one no-code data integration platform. Empower any size team to consistently deliver projects on-time & under budget. Integrate.io's Platform includes: -No-Code ETL & Reverse ETL: Drag & drop no-code data pipelines with 220+ out-of-the-box data transformations -Easy ELT & CDC :The Fastest Data Replication On The Market -Automated API Generation: Build Automated, Secure APIs in Minutes - Data Warehouse Monitoring: Finally Understand Your Warehouse Spend - FREE Data Observability: Custom Pipeline Alerts to Monitor Data in Real-Time -
16
Nextflow
Seqera Labs
FreeData-driven computational pipelines. Nextflow allows for reproducible and scalable scientific workflows by using software containers. It allows adaptation of scripts written in most common scripting languages. Fluent DSL makes it easy to implement and deploy complex reactive and parallel workflows on clusters and clouds. Nextflow was built on the belief that Linux is the lingua Franca of data science. Nextflow makes it easier to create a computational pipeline that can be used to combine many tasks. You can reuse existing scripts and tools. Additionally, you don't have to learn a new language to use Nextflow. Nextflow supports Docker, Singularity and other containers technology. This, together with integration of the GitHub Code-sharing Platform, allows you write self-contained pipes, manage versions, reproduce any configuration quickly, and allow you to integrate the GitHub code-sharing portal. Nextflow acts as an abstraction layer between the logic of your pipeline and its execution layer. -
17
RudderStack
RudderStack
$750/month RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today. -
18
DMSFACTORY DocumentsPipeliner
DMSFACTORY GmbH
2580€/server DocumentsPipeliner serves as a middleware solution hosted on a server, designed for the automated handling of incoming documents. It actively monitors various input channels, such as mailboxes (like Microsoft Exchange) and file directories, extracting email attachments, standardizing formats (for instance, PDF/A), and enhancing documents with relevant metadata from external systems when required. Subsequently, it transmits the processed information to designated systems, including M-Files, ABBYY FlexiCapture, or other document management and workflow solutions, according to established rules. By using DocumentsPipeliner, organizations can establish a centralized “digital mailroom” that streamlines routine document processing, ensures adherence to compliance standards, and establishes a robust foundation for consistent and scalable operational processes. This innovative approach not only enhances efficiency but also allows companies to better manage their document workflows. -
19
DPR
Qvikly
$50 per user per yearQVIKPREP's Data Prep Runner (DPR) revolutionizes the process of preparing data and enhances data management efficiency. By streamlining data processing, businesses can refine their operations, effortlessly compare datasets, and improve data profiling. This tool helps save valuable time when preparing data for tasks such as operational reporting, data analysis, and transferring data across various systems. Additionally, it minimizes risks associated with data integration project timelines, allowing teams to identify potential issues early through effective data profiling. Automation of data processing further boosts productivity for operations teams, while the easy management of data prep enables the creation of a resilient data pipeline. DPR employs historical data checks to enhance accuracy, ensuring that transactions are efficiently directed into systems and that data is leveraged for automated testing. By guaranteeing timely delivery of data integration projects, it allows organizations to identify and resolve data issues proactively, rather than during testing phases. The tool also facilitates data validation through established rules and enables the correction of data within the pipeline. With its color-coded reports, DPR simplifies the process of comparing data from different sources, making it a vital asset for any organization. Ultimately, leveraging DPR not only enhances operational efficiency but also fosters a culture of data-driven decision-making. -
20
Dagster
Dagster Labs
$0Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. -
21
VirtualMetric
VirtualMetric
FreeVirtualMetric is a comprehensive data monitoring solution that provides organizations with real-time insights into security, network, and server performance. Using its advanced DataStream pipeline, VirtualMetric efficiently collects and processes security logs, reducing the burden on SIEM systems by filtering irrelevant data and enabling faster threat detection. The platform supports a wide range of systems, offering automatic log discovery and transformation across environments. With features like zero data loss and compliance storage, VirtualMetric ensures that organizations can meet security and regulatory requirements while minimizing storage costs and enhancing overall IT operations. -
22
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
23
Talend Pipeline Designer is an intuitive web-based application designed for users to transform raw data into a format suitable for analytics. It allows for the creation of reusable pipelines that can extract, enhance, and modify data from various sources before sending it to selected data warehouses, which can then be used to generate insightful dashboards for your organization. With this tool, you can efficiently build and implement data pipelines in a short amount of time. The user-friendly visual interface enables both design and preview capabilities for batch or streaming processes directly within your web browser. Its architecture is built to scale, supporting the latest advancements in hybrid and multi-cloud environments, while enhancing productivity through real-time development and debugging features. The live preview functionality provides immediate visual feedback, allowing you to diagnose data issues swiftly. Furthermore, you can accelerate decision-making through comprehensive dataset documentation, quality assurance measures, and effective promotion strategies. The platform also includes built-in functions to enhance data quality and streamline the transformation process, making data management an effortless and automated practice. In this way, Talend Pipeline Designer empowers organizations to maintain high data integrity with ease.
-
24
AWS Data Pipeline
Amazon
$1 per monthAWS Data Pipeline is a robust web service designed to facilitate the reliable processing and movement of data across various AWS compute and storage services, as well as from on-premises data sources, according to defined schedules. This service enables you to consistently access data in its storage location, perform large-scale transformations and processing, and seamlessly transfer the outcomes to AWS services like Amazon S3, Amazon RDS, Amazon DynamoDB, and Amazon EMR. With AWS Data Pipeline, you can effortlessly construct intricate data processing workflows that are resilient, repeatable, and highly available. You can rest assured knowing that you do not need to manage resource availability, address inter-task dependencies, handle transient failures or timeouts during individual tasks, or set up a failure notification system. Additionally, AWS Data Pipeline provides the capability to access and process data that was previously confined within on-premises data silos, expanding your data processing possibilities significantly. This service ultimately streamlines the data management process and enhances operational efficiency across your organization. -
25
Catalog
Coalesce
$699 per monthCastor serves as a comprehensive data catalog aimed at facilitating widespread use throughout an entire organization. It provides a holistic view of your data ecosystem, allowing you to swiftly search for information using its robust search capabilities. Transitioning to a new data framework and accessing necessary data becomes effortless. This approach transcends conventional data catalogs by integrating various data sources, thereby ensuring a unified truth. With an engaging and automated documentation process, Castor simplifies the task of establishing trust in your data. Within minutes, users can visualize column-level, cross-system data lineage. Gain an overarching perspective of your data pipelines to enhance confidence in your data integrity. This tool enables users to address data challenges, conduct impact assessments, and ensure GDPR compliance all in one platform. Additionally, it helps in optimizing performance, costs, compliance, and security associated with your data management. By utilizing our automated infrastructure monitoring system, you can ensure the ongoing health of your data stack while streamlining data governance practices. -
26
Trifacta
Trifacta
Trifacta offers an efficient solution for preparing data and constructing data pipelines in the cloud. By leveraging visual and intelligent assistance, it enables users to expedite data preparation, leading to quicker insights. Data analytics projects can falter due to poor data quality; therefore, Trifacta equips you with the tools to comprehend and refine your data swiftly and accurately. It empowers users to harness the full potential of their data without the need for coding expertise. Traditional manual data preparation methods can be tedious and lack scalability, but with Trifacta, you can create, implement, and maintain self-service data pipelines in mere minutes instead of months, revolutionizing your data workflow. This ensures that your analytics projects are not only successful but also sustainable over time. -
27
Astro by Astronomer
Astronomer
Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration. -
28
Hevo Data is a no-code, bi-directional data pipeline platform specially built for modern ETL, ELT, and Reverse ETL Needs. It helps data teams streamline and automate org-wide data flows that result in a saving of ~10 hours of engineering time/week and 10x faster reporting, analytics, and decision making. The platform supports 100+ ready-to-use integrations across Databases, SaaS Applications, Cloud Storage, SDKs, and Streaming Services. Over 500 data-driven companies spread across 35+ countries trust Hevo for their data integration needs.
-
29
Google Cloud Composer
Google
$0.074 per vCPU hourThe managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments. -
30
Azure Event Hubs
Microsoft
$0.03 per hourEvent Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency. -
31
Spring Cloud Data Flow
Spring
Microservices architecture enables efficient streaming and batch data processing specifically designed for platforms like Cloud Foundry and Kubernetes. By utilizing Spring Cloud Data Flow, users can effectively design intricate topologies for their data pipelines, which feature Spring Boot applications developed with the Spring Cloud Stream or Spring Cloud Task frameworks. This powerful tool caters to a variety of data processing needs, encompassing areas such as ETL, data import/export, event streaming, and predictive analytics. The Spring Cloud Data Flow server leverages Spring Cloud Deployer to facilitate the deployment of these data pipelines, which consist of Spring Cloud Stream or Spring Cloud Task applications, onto contemporary infrastructures like Cloud Foundry and Kubernetes. Additionally, a curated selection of pre-built starter applications for streaming and batch tasks supports diverse data integration and processing scenarios, aiding users in their learning and experimentation endeavors. Furthermore, developers have the flexibility to create custom stream and task applications tailored to specific middleware or data services, all while adhering to the user-friendly Spring Boot programming model. This adaptability makes Spring Cloud Data Flow a valuable asset for organizations looking to optimize their data workflows. -
32
Dataplane
Dataplane
FreeDataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling. -
33
Actifio
Google
Streamline the self-service provisioning and refreshing of enterprise workloads while seamlessly integrating with your current toolchain. Enable efficient data delivery and reutilization for data scientists via a comprehensive suite of APIs and automation tools. Achieve data recovery across any cloud environment from any moment in time, concurrently and at scale, surpassing traditional legacy solutions. Reduce the impact of ransomware and cyber threats by ensuring rapid recovery through immutable backup systems. A consolidated platform enhances the protection, security, retention, governance, and recovery of your data, whether on-premises or in the cloud. Actifio’s innovative software platform transforms isolated data silos into interconnected data pipelines. The Virtual Data Pipeline (VDP) provides comprehensive data management capabilities — adaptable for on-premises, hybrid, or multi-cloud setups, featuring extensive application integration, SLA-driven orchestration, flexible data movement, and robust data immutability and security measures. This holistic approach not only optimizes data handling but also empowers organizations to leverage their data assets more effectively. -
34
Ardent
Ardent
FreeArdent (available at tryardent.com) is a cutting-edge platform for AI data engineering that simplifies the building, maintenance, and scaling of data pipelines with minimal human input. Users can simply issue commands in natural language, while the system autonomously manages implementation, infers schemas, tracks lineage, and resolves errors. With its preconfigured ingestors, Ardent enables seamless connections to various data sources, including warehouses, orchestration systems, and databases, typically within 30 minutes. Additionally, it provides automated debugging capabilities by accessing web resources and documentation, having been trained on countless real engineering tasks to effectively address complex pipeline challenges without any manual intervention. Designed for production environments, Ardent adeptly manages numerous tables and pipelines at scale, executes parallel jobs, initiates self-healing workflows, and ensures data quality through monitoring, all while facilitating operations via APIs or a user interface. This unique approach not only enhances efficiency but also empowers teams to focus on strategic decision-making rather than routine technical tasks. -
35
Finicast
Finicast
Cost centers have the ability to enter their data directly into a unified platform. Ensure that everyone is aligned by comparing actual results with forecasts and gathering insights on discrepancies as part of your analysis process. Regardless of whether you refer to last year’s figures or apply a zero-based approach, it is essential to establish precise revenue targets to unify the team. Utilize Finicast to model and project your financial statements effectively. Revenue can be forecasted using historical data along with a comprehensive range of relevant business dimensions. Assess sales performance across various segments, products, and verticals to enhance predictions for future bookings and requirements. Import historical data and incorporate algorithms to facilitate a uniform scoring and segmentation analysis. Optimize coverage and establish quotas that are linked to your sales forecasts. Encourage sales activities by designing plans tailored for teams, regions, and products. Additionally, anticipate pipeline activity by analyzing historical trends, current channels, budgets, and other vital business dimensions. This comprehensive approach ensures all aspects of the sales process are integrated, providing a clearer pathway to achieving strategic financial goals. -
36
Etleap
Etleap
Etleap was created on AWS to support Redshift, snowflake and S3/Glue data warehouses and data lakes. Their solution simplifies and automates ETL through fully-managed ETL as-a-service. Etleap's data wrangler allows users to control how data is transformed for analysis without having to write any code. Etleap monitors and maintains data pipes for availability and completeness. This eliminates the need for constant maintenance and centralizes data sourced from 50+ sources and silos into your database warehouse or data lake. -
37
Informatica Data Engineering
Informatica
Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence. -
38
Yandex Data Proc
Yandex
$0.19 per hourYou determine the cluster size, node specifications, and a range of services, while Yandex Data Proc effortlessly sets up and configures Spark, Hadoop clusters, and additional components. Collaboration is enhanced through the use of Zeppelin notebooks and various web applications via a user interface proxy. You maintain complete control over your cluster with root access for every virtual machine. Moreover, you can install your own software and libraries on active clusters without needing to restart them. Yandex Data Proc employs instance groups to automatically adjust computing resources of compute subclusters in response to CPU usage metrics. Additionally, Data Proc facilitates the creation of managed Hive clusters, which helps minimize the risk of failures and data loss due to metadata issues. This service streamlines the process of constructing ETL pipelines and developing models, as well as managing other iterative operations. Furthermore, the Data Proc operator is natively integrated into Apache Airflow, allowing for seamless orchestration of data workflows. This means that users can leverage the full potential of their data processing capabilities with minimal overhead and maximum efficiency. -
39
Sentrana
Sentrana
Whether your data exists in isolated environments or is being produced at the edge, Sentrana offers you the versatility to establish AI and data engineering pipelines wherever your information resides. Furthermore, you can easily share your AI, data, and pipelines with anyone, regardless of their location. With Sentrana, you gain unparalleled agility to transition seamlessly between various computing environments, all while ensuring that your data and projects automatically replicate to your desired destinations. The platform features an extensive collection of components that allow you to craft personalized AI and data engineering pipelines. You can quickly assemble and evaluate numerous pipeline configurations to develop the AI solutions you require. Transforming your data into AI becomes a straightforward task, incurring minimal effort and expense. As Sentrana operates as an open platform, you have immediate access to innovative AI components that are continually being developed. Moreover, Sentrana converts the pipelines and AI models you build into reusable blocks, enabling any member of your team to integrate them into their own projects with ease. This collaborative capability not only enhances productivity but also fosters creativity across your organization. -
40
Chalk
Chalk
FreeExperience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem. -
41
BigBI
BigBI
BigBI empowers data professionals to create robust big data pipelines in an interactive and efficient manner, all without requiring any programming skills. By harnessing the capabilities of Apache Spark, BigBI offers remarkable benefits such as scalable processing of extensive datasets, achieving speeds that can be up to 100 times faster. Moreover, it facilitates the seamless integration of conventional data sources like SQL and batch files with contemporary data types, which encompass semi-structured formats like JSON, NoSQL databases, Elastic, and Hadoop, as well as unstructured data including text, audio, and video. Additionally, BigBI supports the amalgamation of streaming data, cloud-based information, artificial intelligence/machine learning, and graphical data, making it a comprehensive tool for data management. This versatility allows organizations to leverage diverse data types and sources, enhancing their analytical capabilities significantly. -
42
Lightbend
Lightbend
Lightbend offers innovative technology that empowers developers to create applications centered around data, facilitating the development of demanding, globally distributed systems and streaming data pipelines. Businesses across the globe rely on Lightbend to address the complexities associated with real-time, distributed data, which is essential for their most critical business endeavors. The Akka Platform provides essential components that simplify the process for organizations to construct, deploy, and manage large-scale applications that drive digital transformation. By leveraging reactive microservices, companies can significantly speed up their time-to-value while minimizing expenses related to infrastructure and cloud services, all while ensuring resilience against failures and maintaining efficiency at any scale. With built-in features for encryption, data shredding, TLS enforcement, and adherence to GDPR standards, it ensures secure data handling. Additionally, the framework supports rapid development, deployment, and oversight of streaming data pipelines, making it a comprehensive solution for modern data challenges. This versatility positions companies to fully harness the potential of their data, ultimately propelling them forward in an increasingly competitive landscape. -
43
Kanerika's AI Data Operations Platform, Flip, simplifies data transformation through its low-code/no code approach. Flip is designed to help organizations create data pipelines in a seamless manner. It offers flexible deployment options, an intuitive interface, and a cost effective pay-per-use model. Flip empowers businesses to modernize IT strategies by accelerating data processing and automating, unlocking actionable insight faster. Flip makes your data work harder for you, whether you want to streamline workflows, improve decision-making or stay competitive in today's dynamic environment.
-
44
Datazoom
Datazoom
Data is essential to improve the efficiency, profitability, and experience of streaming video. Datazoom allows video publishers to manage distributed architectures more efficiently by centralizing, standardizing and integrating data in real time. This creates a more powerful data pipeline, improves observability and adaptability, as well as optimizing solutions. Datazoom is a video data platform which continuously gathers data from endpoints such as a CDN or video player through an ecosystem of collectors. Once the data has been gathered, it is normalized with standardized data definitions. The data is then sent via available connectors to analytics platforms such as Google BigQuery, Google Analytics and Splunk. It can be visualized using tools like Looker or Superset. Datazoom is your key for a more efficient and effective data pipeline. Get the data you need right away. Do not wait to get your data if you have an urgent issue. -
45
DoubleCloud
DoubleCloud
$0.024 per 1 GB per monthOptimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry.