JOpt.TourOptimizer
If you are developing software for Logistics Dispatch Solutions, which contain challenges:
-For staff dispatching, such as sales reps, mobile service, or workforce?
-For truck shipment allocation in daily transportation and logistics (scheduling, tour optimization, etc.)?
-For waste management and District Planning?
-Generally, highly constrained problem sets?
And your product does not have an automized optimization engine?
Then JOpt is the perfect fit for your product and can help you to save money, time, and workforce, letting you concentrate on your core business.
JOpt.TourOptimizer is an adaptable component to solve VRP, CVRP, and VRPTW class problems for any route optimization in logistics or similar fields. It comes as a Java library or in Docker Container utilizing the Spring Framework and Swagger.
Learn more
Google Cloud Run
Fully managed compute platform to deploy and scale containerized applications securely and quickly. You can write code in your favorite languages, including Go, Python, Java Ruby, Node.js and other languages. For a simple developer experience, we abstract away all infrastructure management. It is built upon the open standard Knative which allows for portability of your applications. You can write code the way you want by deploying any container that listens to events or requests. You can create applications in your preferred language with your favorite dependencies, tools, and deploy them within seconds. Cloud Run abstracts away all infrastructure management by automatically scaling up and down from zero almost instantaneously--depending on traffic. Cloud Run only charges for the resources you use. Cloud Run makes app development and deployment easier and more efficient. Cloud Run is fully integrated with Cloud Code and Cloud Build, Cloud Monitoring and Cloud Logging to provide a better developer experience.
Learn more
yarl
All components of a URL, including scheme, user, password, host, port, path, query, and fragment, can be accessed through their respective properties. Every manipulation of a URL results in a newly generated URL object, and the strings provided to the constructor or modification functions are automatically encoded to yield a canonical format. While standard properties return percent-decoded values, the raw_ variants should be used to obtain encoded strings. A human-readable version of the URL can be accessed using the .human_repr() method. Binary wheels for yarl are available on PyPI for operating systems such as Linux, Windows, and MacOS. In cases where you wish to install yarl on different systems like Alpine Linux—which does not comply with manylinux standards due to the absence of glibc—you will need to compile the library from the source using the provided tarball. This process necessitates having a C compiler and the necessary Python headers installed on your machine. It is important to remember that the uncompiled, pure-Python version is significantly slower. Nevertheless, PyPy consistently employs a pure-Python implementation, thus remaining unaffected by performance variations. Additionally, this means that regardless of the environment, PyPy users can expect consistent behavior from the library.
Learn more
openpyxl
Openpyxl is a Python library designed for reading and writing Excel 2010 files in formats such as xlsx, xlsm, xltx, and xltm. The library was developed due to the absence of a native solution for handling Office Open XML files in Python, and it owes its origins to the PHPExcel project. It is important to note that openpyxl does not provide protection against certain vulnerabilities like quadratic blowup or billion laughs XML attacks by default, but these risks can be mitigated by installing the defusedxml library. To install openpyxl, you can use pip, and it's recommended to perform this installation within a Python virtual environment to avoid conflicts with system packages. In some instances, you may want to work with a specific version of the library, especially if there are fixes that have not yet been released officially. Fortunately, you do not need to create an actual file on your filesystem to begin using openpyxl; simply import the Workbook class and begin your tasks. When you create sheets, they are automatically assigned names, and once you rename a worksheet, you can access it using the corresponding key from the workbook. This ease of use makes openpyxl a popular choice for many Python developers working with Excel files.
Learn more