Best Yandex Data Streams Alternatives in 2025

Find the top alternatives to Yandex Data Streams currently available. Compare ratings, reviews, pricing, and features of Yandex Data Streams alternatives in 2025. Slashdot lists the best Yandex Data Streams alternatives on the market that offer competing products that are similar to Yandex Data Streams. Sort through Yandex Data Streams alternatives below to make the best choice for your needs

  • 1
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    Striim Reviews
    Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data.
  • 3
    Snowflake Reviews
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 4
    Apache Beam Reviews

    Apache Beam

    Apache Software Foundation

    Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies.
  • 5
    Confluent Reviews
    Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented.
  • 6
    Rockset Reviews
    Real-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers.
  • 7
    Samza Reviews

    Samza

    Apache Software Foundation

    Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs.
  • 8
    Narrative Reviews
    With your own data shop, create new revenue streams from the data you already have. Narrative focuses on the fundamental principles that make buying or selling data simpler, safer, and more strategic. You must ensure that the data you have access to meets your standards. It is important to know who and how the data was collected. Access new supply and demand easily for a more agile, accessible data strategy. You can control your entire data strategy with full end-to-end access to all inputs and outputs. Our platform automates the most labor-intensive and time-consuming aspects of data acquisition so that you can access new data sources in days instead of months. You'll only ever have to pay for what you need with filters, budget controls and automatic deduplication.
  • 9
    Google Cloud Datastream Reviews
    A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights.
  • 10
    IBM Event Streams Reviews
    IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
  • 11
    Leo Reviews

    Leo

    Leo

    $251 per month
    Transform your data into a real-time stream, ensuring it is instantly accessible and ready for utilization. Leo simplifies the complexities of event sourcing, allowing you to effortlessly create, visualize, monitor, and sustain your data streams. By unlocking your data, you free yourself from the limitations imposed by outdated systems. The significant reduction in development time leads to higher satisfaction among both developers and stakeholders alike. Embrace microservice architectures to foster continuous innovation and enhance your agility. Ultimately, achieving success with microservices hinges on effective data management. Organizations need to build a dependable and repeatable data backbone to turn microservices into a tangible reality. You can also integrate comprehensive search functionality into your custom application, as the continuous flow of data makes managing and updating a search database a seamless task. With these advancements, your organization will be well-positioned to leverage data more effectively than ever before.
  • 12
    Interlok Reviews
    Easily expose and utilize APIs for legacy systems with minimal configuration, while simultaneously capturing and transmitting large datasets through real-time data interchange without the need for development. The integration landscape in cloud environments can be managed more effectively with straightforward and unified configurations, addressing a common challenge faced by organizations of any size when it comes to merging diverse systems and datasets. This integration hurdle often presents itself in various contexts, whether it involves on-premise applications, cloud-based solutions, or interoperability between different cloud services. The Adaptris Interlok™ Integration Framework serves as an event-driven architecture that empowers architects to swiftly link various applications, communication protocols, and data formats, resulting in a cohesive integrated solution. It provides effortless connections to hundreds of applications and supports a wide array of data standards and communication protocols. Additionally, the framework offers the capacity to cache data, which significantly diminishes the latency experienced during multiple requests to slower or distant backend systems, enhancing overall performance and efficiency. Ultimately, this framework streamlines the integration process, making it more accessible for organizations navigating complex technological landscapes.
  • 13
    Materialize Reviews

    Materialize

    Materialize

    $0.98 per hour
    Materialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks.
  • 14
    ksqlDB Reviews
    With your data now actively flowing, it's essential to extract meaningful insights from it. Stream processing allows for immediate analysis of your data streams, though establishing the necessary infrastructure can be a daunting task. To address this challenge, Confluent has introduced ksqlDB, a database specifically designed for applications that require stream processing. By continuously processing data streams generated across your organization, you can turn your data into actionable insights right away. ksqlDB features an easy-to-use syntax that facilitates quick access to and enhancement of data within Kafka, empowering development teams to create real-time customer experiences and meet operational demands driven by data. This platform provides a comprehensive solution for gathering data streams, enriching them, and executing queries on newly derived streams and tables. As a result, you will have fewer infrastructure components to deploy, manage, scale, and secure. By minimizing the complexity in your data architecture, you can concentrate more on fostering innovation and less on technical maintenance. Ultimately, ksqlDB transforms the way businesses leverage their data for growth and efficiency.
  • 15
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 16
    DeltaStream Reviews
    DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored.
  • 17
    Amazon Kinesis Reviews
    Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise.
  • 18
    Astra Streaming Reviews
    Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments.
  • 19
    TapData Reviews
    A live data platform based on Change Data Capture (CDC) facilitates the replication of diverse databases, supports real-time data integration, and assists in constructing a real-time data warehouse. By implementing CDC to synchronize production line information stored in DB2 and Oracle with a modern database, TapData has empowered an AI-enhanced real-time dispatch application that streamlines the semiconductor manufacturing process. The availability of real-time data has enabled prompt decision-making within the RTD application, resulting in quicker turnaround times and increased production yield. As a major telecommunications provider, the client operates numerous regional systems designed to serve local users effectively. By consolidating and integrating data from multiple sources and locations into a single centralized data repository, the client successfully established an order center that aggregates orders from various applications. Additionally, TapData integrates inventory data from over 500 stores, delivering real-time insights into stock availability and customer preferences, thereby significantly boosting supply chain efficiency. This innovative approach not only enhances operational performance but also positions the client to respond swiftly to market demands.
  • 20
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency.
  • 21
    Amazon Data Firehose Reviews
    Effortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams.
  • 22
    Baidu AI Cloud Stream Computing Reviews
    Baidu Stream Computing (BSC) offers the ability to process real-time streaming data with minimal latency, impressive throughput, and high precision. It seamlessly integrates with Spark SQL, allowing for complex business logic to be executed via SQL statements, which enhances usability. Users benefit from comprehensive lifecycle management of their streaming computing tasks. Additionally, BSC deeply integrates with various Baidu AI Cloud storage solutions, such as Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, and SCS, serving as both upstream and downstream components in the stream computing ecosystem. Moreover, it provides robust job monitoring capabilities, enabling users to track performance indicators and establish alarm rules to ensure job security, thereby enhancing the overall reliability of the system. This level of integration and monitoring makes BSC a powerful tool for businesses looking to leverage real-time data processing effectively.
  • 23
    Apache Flink Reviews

    Apache Flink

    Apache Software Foundation

    Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions.
  • 24
    Apache Storm Reviews

    Apache Storm

    Apache Software Foundation

    Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available.
  • 25
    Apache Flume Reviews

    Apache Flume

    Apache Software Foundation

    Flume is a dependable and distributed service designed to efficiently gather, aggregate, and transport significant volumes of log data. Its architecture is straightforward and adaptable, centered on streaming data flows, which enhances its usability. The system is built to withstand faults and includes various mechanisms for recovery and adjustable reliability features. Additionally, it employs a simple yet extensible data model that supports online analytic applications effectively. The Apache Flume team is excited to announce the launch of Flume version 1.8.0, which continues to enhance its capabilities. This version further solidifies Flume's role as a reliable tool for managing large-scale streaming event data efficiently.
  • 26
    A3 EDI Reviews
    A3 EDI serves as a synergistic B2B solution that streamlines real-time digital communication with trading partners, allowing businesses to tap into an extensive network of companies for growth opportunities. It enhances the ecommerce experience by facilitating seamless connections with partners, irrespective of the software, data formats, or unique requirements involved. Through the automation of document processing and the reduction of manual tasks, the platform guarantees uninterrupted service and a fully dependable system, which ultimately boosts profitability, even when faced with economic difficulties. A3 EDI effectively manages global information flows, ensuring that transactions are automated and integrated in accordance with partner specifications. It refines the entire supply chain process, encompassing purchase orders, shipping notifications, and electronic invoices. Furthermore, the platform interfaces with various marketplaces, such as Amazon, ecommerce platforms, software applications, and logistics providers, enabling businesses to capitalize on digital avenues. The integration of these features not only simplifies operations but also positions companies to thrive in an increasingly competitive market.
  • 27
    Decodable Reviews

    Decodable

    Decodable

    $0.20 per task per hour
    Say goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis.
  • 28
    Hitachi Streaming Data Platform Reviews
    The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur.
  • 29
    SQLstream Reviews

    SQLstream

    Guavus, a Thales company

    In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more
  • 30
    Streamkap Reviews

    Streamkap

    Streamkap

    $600 per month
    Streamkap is a modern streaming ETL platform built on top of Apache Kafka and Flink, designed to replace batch ETL with streaming in minutes. It enables data movement with sub-second latency using change data capture for minimal impact on source databases and real-time updates. The platform offers dozens of pre-built, no-code source connectors, automated schema drift handling, updates, data normalization, and high-performance CDC for efficient and low-impact data movement. Streaming transformations power faster, cheaper, and richer data pipelines, supporting Python and SQL transformations for common use cases like hashing, masking, aggregations, joins, and unnesting JSON. Streamkap allows users to connect data sources and move data to target destinations with an automated, reliable, and scalable data movement platform. It supports a broad range of event and database sources.
  • 31
    HarperDB Reviews
    HarperDB is an innovative platform that integrates database management, caching, application development, and streaming capabilities into a cohesive system. This allows businesses to efficiently implement global-scale back-end services with significantly reduced effort, enhanced performance, and cost savings compared to traditional methods. Users can deploy custom applications along with pre-existing add-ons, ensuring a high-throughput and ultra-low latency environment for their data needs. Its exceptionally fast distributed database offers vastly superior throughput rates than commonly used NoSQL solutions while maintaining unlimited horizontal scalability. Additionally, HarperDB supports real-time pub/sub communication and data processing through protocols like MQTT, WebSocket, and HTTP. This means organizations can leverage powerful data-in-motion functionalities without the necessity of adding extra services, such as Kafka, to their architecture. By prioritizing features that drive business growth, companies can avoid the complexities of managing intricate infrastructures. While you can’t alter the speed of light, you can certainly minimize the distance between your users and their data, enhancing overall efficiency and responsiveness. In doing so, HarperDB empowers businesses to focus on innovation and progress rather than getting bogged down by technical challenges.
  • 32
    Datos Reviews
    Datos is a worldwide provider of clickstream data that specializes in licensing anonymized and privacy-compliant datasets, ensuring safety for its clients and partners in a challenging marketplace. With access to both desktop and mobile browsing clickstreams from millions of users globally, Datos delivers this information in user-friendly data feeds. The company's mission revolves around generating clickstream data founded on trust and aimed at achieving concrete outcomes. Esteemed organizations worldwide rely on Datos to furnish the insights necessary to navigate the complexities of the digital landscape with clarity. Among its offerings is the Datos Activity Feed, which grants a comprehensive view of the entire conversion funnel by monitoring every page visit and analyzing varied user behaviors. Additionally, the Datos Behavior Feed provides in-depth data regarding user trends, enhancing businesses' understanding of their audience. By continually evolving its products, Datos ensures that its clients remain equipped to adapt to the fast-paced changes in the digital realm.
  • 33
    Informatica Data Engineering Streaming Reviews
    Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before.
  • 34
    WarpStream Reviews

    WarpStream

    WarpStream

    $2,987 per month
    WarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure.
  • 35
    Spark Streaming Reviews

    Spark Streaming

    Apache Software Foundation

    Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.
  • 36
    Alibaba Cloud Data Integration Reviews
    Alibaba Cloud Data Integration serves as a robust platform for data synchronization that allows for both real-time and offline data transfers among a wide range of data sources, networks, and geographical locations. It effectively facilitates the synchronization of over 400 different pairs of data sources, encompassing RDS databases, semi-structured and unstructured storage (like audio, video, and images), NoSQL databases, as well as big data storage solutions. Additionally, the platform supports real-time data interactions between various data sources, including popular databases such as Oracle and MySQL, along with DataHub. Users can easily configure offline tasks by defining specific triggers down to the minute, which streamlines the process of setting up periodic incremental data extraction. Furthermore, Data Integration seamlessly collaborates with DataWorks data modeling to create a cohesive operations and maintenance workflow. Utilizing the computational power of Hadoop clusters, the platform facilitates the synchronization of HDFS data with MaxCompute, ensuring efficient data management across multiple environments. By providing such extensive capabilities, it empowers businesses to enhance their data handling processes considerably.
  • 37
    Mobito Reviews
    Mobito stands as a key provider of mobility data solutions, enabling organizations to effectively leverage and profit from mobility data and insights. Among its diverse offerings is the MOBITO Connected Fleet API, which delivers a unified, multi-OEM vehicle data stream tailored for specific fleet vehicles, alongside the MOBITO Anonymized Vehicle Data, which provides anonymized information sourced from a vast network of over 7 million vehicles. Furthermore, the MOBITO Data Marketplace presents access to an extensive range of over 20 data categories, enriched by partnerships with vetted and integrated sources. The Connected Fleet API simplifies data access for fleet owners and service providers by allowing them to effortlessly retrieve information from connected vehicles across various automotive brands. This innovative, hardware-free solution connects fleet managers with compatible vehicles, streamlining fleet operations and enhancing management efficiency. In addition, the Anonymized Vehicle Data features timestamped vehicle location information, also referred to as floating car data, which is collected through onboard devices in the vehicles, thus providing valuable insights into mobility patterns. As a result, organizations can make more informed decisions based on comprehensive data analytics.
  • 38
    AWS Data Exchange Reviews
    AWS Data Exchange is a service designed to streamline the process of discovering, subscribing to, and utilizing third-party data within the cloud environment. It features an extensive catalog comprising over 3,500 data sets sourced from more than 300 different data providers, which include a variety of formats such as data files, tables, and APIs. This platform allows users to efficiently manage data procurement and governance by centralizing all third-party data subscriptions in one location while also providing the option to transfer existing subscriptions without incurring additional fees. Furthermore, AWS Data Exchange guarantees secure and compliant data usage by integrating with AWS Identity and Access Management (IAM) and offering data encryption both at rest and during transmission. Users can easily incorporate the subscribed data into their AWS ecosystem, enhancing their capabilities for analytics and machine learning projects. The service accommodates multiple data delivery methods, including direct access to data stored in Amazon S3 buckets managed by data providers, enabling subscribers to leverage these files with AWS solutions such as Amazon Athena and Amazon EMR. This comprehensive approach ensures that organizations can harness the power of third-party data while maintaining control and security throughout the process.
  • 39
    Oracle Cloud Infrastructure Streaming Reviews
    The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
  • 40
    Dromo Reviews

    Dromo

    Dromo

    $399 per month
    Dromo is a quick-deploy, self-service data file importer that allows users to easily upload data from various formats such as CSV, XLS, and XLSX. With its user-friendly embeddable importer, users are guided through the processes of validating, cleaning, and transforming their data files, ensuring that the final product is high quality and in the desired format. The AI-driven column matching feature of Dromo simplifies the task of aligning imported data with your existing schema, while its robust validation processes work seamlessly with your application. Security is a priority for Dromo, which offers a private mode that processes data entirely within the user’s browser, allowing direct file uploads to your cloud storage without any third-party interference. In addition to being SOC 2 certified and GDPR-compliant, Dromo is dedicated to maintaining data privacy and security at all levels. Moreover, it provides extensive customization options to align with your brand's identity and supports a wide range of languages to cater to diverse user needs. This combination of features makes Dromo a versatile tool for efficient data management.
  • 41
    Flatfile Reviews
    Flatfile is an advanced data exchange platform that simplifies the process of importing, cleaning, transforming, and managing data for businesses. It provides a robust suite of APIs, allowing seamless integration into existing systems for efficient file-based data workflows. With an intuitive interface, the platform supports easy data management through features like search, sorting, and automated transformations. Built with strict compliance to SOC 2, HIPAA, and GDPR standards, Flatfile ensures data security and privacy while leveraging a scalable cloud infrastructure. By reducing manual effort and improving data quality, Flatfile accelerates data onboarding and supports businesses in achieving better operational efficiency.
  • 42
    CSVBox Reviews

    CSVBox

    CSVBox

    $19 per month
    CSVBox serves as an importer tool tailored for CSV files in web applications, SaaS solutions, and APIs, allowing users to seamlessly integrate a CSV import feature into their applications within minutes. It boasts an advanced upload interface that lets users choose a spreadsheet file, align CSV headers with a set data model using intelligent column-matching suggestions, and perform data validation in real-time within the widget to guarantee smooth and accurate uploads. Supporting various file formats, including CSV, XLSX, and XLS, the tool incorporates functionalities such as smart column matching, client-side data checks, and upload progress indicators to boost user trust during the import process. Users can also enjoy a no-code setup, which permits them to establish their data model and validation criteria through an intuitive dashboard without any need for coding alterations. Furthermore, CSVBox allows for the generation of import links that facilitate file acceptance without necessitating the widget's presence, alongside the capability to assign custom attributes for further personalization. Overall, this comprehensive solution significantly simplifies the data import experience for users.
  • 43
    Magic EDI Service Reviews
    The Magic EDI service platform serves as a centralized solution aimed at streamlining B2B data exchanges with trading partners, thereby improving efficiency, precision, and responsiveness. It accommodates an extensive variety of EDI messages and transport protocols, allowing for smooth integration with different systems. Featuring a one-to-many architecture, the platform permits a single connection for each business process, irrespective of the number of partners involved, which simplifies both deployment and maintenance. With an impressive catalog of over 10,000 preconfigured EDI partner profiles and more than 100 certified connectors to key internal business systems like SAP, Salesforce, SugarCRM, and JD Edwards, the Magic EDI platform enables quick digital connectivity. Furthermore, it includes a self-service onboarding portal for partners, which helps minimize both setup costs and time. The platform also guarantees comprehensive visibility into every EDI transaction, automates supplier updates through standardized EDI messages, and integrates seamlessly with freight management systems, enhancing overall operational efficiency. This advanced solution ultimately empowers businesses to focus more on their core activities rather than on the complexities of data exchange.
  • 44
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • 45
    Google Cloud Dataflow Reviews
    Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns.