Best Vertica Alternatives in 2025

Find the top alternatives to Vertica currently available. Compare ratings, reviews, pricing, and features of Vertica alternatives in 2025. Slashdot lists the best Vertica alternatives on the market that offer competing products that are similar to Vertica. Sort through Vertica alternatives below to make the best choice for your needs

  • 1
    Google Cloud BigQuery Reviews
    See Software
    Learn More
    Compare Both
    BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
  • 2
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 3
    Snowflake Reviews
    See Software
    Learn More
    Compare Both
    Snowflake is a cloud-native data platform that combines data warehousing, data lakes, and data sharing into a single solution. By offering elastic scalability and automatic scaling, Snowflake enables businesses to handle vast amounts of data while maintaining high performance at low cost. The platform's architecture allows users to separate storage and compute, offering flexibility in managing workloads. Snowflake supports real-time data sharing and integrates seamlessly with other analytics tools, enabling teams to collaborate and gain insights from their data more efficiently. Its secure, multi-cloud architecture makes it a strong choice for enterprises looking to leverage data at scale.
  • 4
    MonetDB Reviews
    Explore a diverse array of SQL features that allow you to build applications ranging from straightforward analytics to complex hybrid transactional and analytical processing. If you're eager to uncover insights from your data, striving for efficiency, or facing tight deadlines, MonetDB can deliver query results in just seconds or even faster. For those looking to leverage or modify their own code and requiring specialized functions, MonetDB provides hooks to integrate user-defined functions in SQL, Python, R, or C/C++. Become part of the vibrant MonetDB community that spans over 130 countries, including students, educators, researchers, startups, small businesses, and large corporations. Embrace the forefront of analytical database technology and ride the wave of innovation! Save time with MonetDB’s straightforward installation process, allowing you to quickly get your database management system operational. This accessibility ensures that users of all backgrounds can efficiently harness the power of data for their projects.
  • 5
    Amazon Redshift Reviews
    Amazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes.
  • 6
    VMware Tanzu Greenplum Reviews
    Liberate your applications and streamline your operations. Success in today's business landscape requires excellence in software development. What strategies can you employ to enhance the speed of feature delivery for the systems that drive your enterprise? Or how can you efficiently oversee and operate modernized workloads across any cloud platform? By leveraging VMware Tanzu together with VMware Pivotal Labs, you can revolutionize both your teams and applications, all while making operations more straightforward across a multi-cloud environment, whether it's on-premises, in the public cloud, or at the edge. This transformative approach not only boosts efficiency but also fosters innovation within your organization.
  • 7
    Greenplum Reviews
    Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation.
  • 8
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 9
    Teradata VantageCloud Reviews
    VantageCloud by Teradata is a next-gen cloud analytics ecosystem built to unify disparate data sources, deliver real-time AI-powered insights, and drive enterprise innovation with unprecedented efficiency. The platform includes VantageCloud Lake, designed for elastic scalability and GPU-accelerated AI workloads, and VantageCloud Enterprise, which supports robust analytics capabilities across secure hybrid and multi-cloud deployments. It seamlessly integrates with leading cloud providers like AWS, Azure, and Google Cloud, and supports open table formats like Apache Iceberg for greater data flexibility. With built-in support for advanced analytics, workload management, and cross-functional collaboration, VantageCloud provides the agility and power modern enterprises need to accelerate digital transformation and optimize operational outcomes.
  • 10
    SingleStore Reviews
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 11
    Rockset Reviews
    Real-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers.
  • 12
    IBM Db2 Reviews
    IBM Db2 encompasses a suite of data management solutions, prominently featuring the Db2 relational database. These offerings incorporate AI-driven functionalities designed to streamline the management of both structured and unstructured data across various on-premises and multicloud settings. By simplifying data accessibility, the Db2 suite empowers businesses to leverage the advantages of AI effectively. Most components of the Db2 family are integrated within the IBM Cloud Pak® for Data platform, available either as additional features or as built-in data source services, ensuring that nearly all data is accessible across hybrid or multicloud frameworks to support AI-driven applications. You can easily unify your transactional data repositories and swiftly extract insights through intelligent, universal querying across diverse data sources. The multimodel functionality helps reduce expenses by removing the necessity for data replication and migration. Additionally, Db2 offers enhanced flexibility, allowing for deployment on any cloud service provider, which further optimizes operational agility and responsiveness. This versatility in deployment options ensures that businesses can adapt their data management strategies as their needs evolve.
  • 13
    Querona Reviews
    We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live.
  • 14
    MariaDB Reviews
    MariaDB Platform is an enterprise-level open-source database solution. It supports transactional, analytical, and hybrid workloads, as well as relational and JSON data models. It can scale from standalone databases to data warehouses to fully distributed SQL, which can execute millions of transactions per second and perform interactive, ad-hoc analytics on billions upon billions of rows. MariaDB can be deployed on prem-on commodity hardware. It is also available on all major public cloud providers and MariaDB SkySQL, a fully managed cloud database. MariaDB.com provides more information.
  • 15
    ClickHouse Reviews
    ClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads.
  • 16
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
  • 17
    Azure Synapse Analytics Reviews
    Azure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes.
  • 18
    SelectDB Reviews

    SelectDB

    SelectDB

    $0.22 per hour
    SelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data.
  • 19
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 20
    kdb+ Reviews
    Introducing a robust cross-platform columnar database designed for high-performance historical time-series data, which includes: - A compute engine optimized for in-memory operations - A streaming processor that functions in real time - A powerful query and programming language known as q Kdb+ drives the kdb Insights portfolio and KDB.AI, offering advanced time-focused data analysis and generative AI functionalities to many of the world's top enterprises. Recognized for its unparalleled speed, kdb+ has been independently benchmarked* as the leading in-memory columnar analytics database, providing exceptional benefits for organizations confronting complex data challenges. This innovative solution significantly enhances decision-making capabilities, enabling businesses to adeptly respond to the ever-evolving data landscape. By leveraging kdb+, companies can gain deeper insights that lead to more informed strategies.
  • 21
    CockroachDB Reviews
    CockroachDB: Cloud-native distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services need a database that can scale across clouds, reduces operational complexity, and improves reliability. CockroachDB provides resilient, distributed SQL with ACID transactions. Data partitioned by geography is also available. Combining CockroachDB and orchestration tools such as Mesosphere DC/OS and Kubernetes to automate mission-critical applications can speed up operations.
  • 22
    Sadas Engine Reviews
    Top Pick
    Sadas Engine is the fastest columnar database management system in cloud and on-premise. Sadas Engine is the solution that you are looking for. * Store * Manage * Analyze It takes a lot of data to find the right solution. * BI * DWH * Data Analytics The fastest columnar Database Management System can turn data into information. It is 100 times faster than transactional DBMSs, and can perform searches on large amounts of data for a period that lasts longer than 10 years.
  • 23
    Apache Kudu Reviews

    Apache Kudu

    The Apache Software Foundation

    A Kudu cluster comprises tables that resemble those found in traditional relational (SQL) databases. These tables can range from a straightforward binary key and value structure to intricate designs featuring hundreds of strongly-typed attributes. Similar to SQL tables, each Kudu table is defined by a primary key, which consists of one or more columns; this could be a single unique user identifier or a composite key such as a (host, metric, timestamp) combination tailored for time-series data from machines. The primary key allows for quick reading, updating, or deletion of rows. The straightforward data model of Kudu facilitates the migration of legacy applications as well as the development of new ones, eliminating concerns about encoding data into binary formats or navigating through cumbersome JSON databases. Additionally, tables in Kudu are self-describing, enabling the use of standard analysis tools like SQL engines or Spark. With user-friendly APIs, Kudu ensures that developers can easily integrate and manipulate their data. This approach not only streamlines data management but also enhances overall efficiency in data processing tasks.
  • 24
    Databend Reviews
    Databend is an innovative, cloud-native data warehouse crafted to provide high-performance and cost-effective analytics for extensive data processing needs. Its architecture is elastic, allowing it to scale dynamically in response to varying workload demands, thus promoting efficient resource use and reducing operational expenses. Developed in Rust, Databend delivers outstanding performance through features such as vectorized query execution and columnar storage, which significantly enhance data retrieval and processing efficiency. The cloud-first architecture facilitates smooth integration with various cloud platforms while prioritizing reliability, data consistency, and fault tolerance. As an open-source solution, Databend presents a versatile and accessible option for data teams aiming to manage big data analytics effectively in cloud environments. Additionally, its continuous updates and community support ensure that users can take advantage of the latest advancements in data processing technology.
  • 25
    Apache Kylin Reviews

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights.
  • 26
    Firebolt Reviews
    Firebolt offers incredible speed and flexibility to tackle even the most daunting data challenges. By completely reimagining the cloud data warehouse, Firebolt provides an exceptionally rapid and efficient analytics experience regardless of scale. This significant leap in performance enables you to process larger datasets with greater detail through remarkably swift queries. You can effortlessly adjust your resources to accommodate any workload, volume of data, and number of simultaneous users. At Firebolt, we are committed to making data warehouses far more user-friendly than what has traditionally been available. This commitment drives us to simplify processes that were once complex and time-consuming into manageable tasks. Unlike other cloud data warehouse providers that profit from the resources you utilize, our model prioritizes transparency and fairness. We offer a pricing structure that ensures you can expand your operations without incurring excessive costs, making our solution not only efficient but also economical. Ultimately, Firebolt empowers organizations to harness the full potential of their data without the usual headaches.
  • 27
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 28
    DataLakeHouse.io Reviews
    DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions.
  • 29
    HEAVY.AI Reviews
    HEAVY.AI is a pioneer in accelerated analysis. The HEAVY.AI platform can be used by government and business to uncover insights in data that is beyond the reach of traditional analytics tools. The platform harnesses the huge parallelism of modern CPU/GPU hardware and is available both in the cloud or on-premise. HEAVY.AI was developed from research at Harvard and MIT Computer Science and Artificial Intelligence Laboratory. You can go beyond traditional BI and GIS and extract high-quality information from large datasets with no lag by leveraging modern GPU and CPU hardware. To get a complete picture of what, when and where, unify and explore large geospatial or time-series data sets. Combining interactive visual analytics, hardware accelerated SQL, advanced analytics & data sciences frameworks, you can find the opportunity and risk in your enterprise when it matters most.
  • 30
    Amazon Aurora Reviews
    Amazon Aurora is a cloud-based relational database that is compatible with both MySQL and PostgreSQL, merging the high performance and reliability of traditional enterprise databases with the ease and affordability of open-source solutions. Its performance surpasses that of standard MySQL databases by as much as five times and outpaces standard PostgreSQL databases by three times. Additionally, it offers the security, availability, and dependability synonymous with commercial databases, all at a fraction of the cost—specifically, one-tenth. Fully managed by the Amazon Relational Database Service (RDS), Aurora simplifies operations by automating essential tasks such as hardware provisioning, database configuration, applying patches, and conducting backups. The database boasts a self-healing, fault-tolerant storage system that automatically scales to accommodate up to 64TB for each database instance. Furthermore, Amazon Aurora ensures high performance and availability through features like the provision of up to 15 low-latency read replicas, point-in-time recovery options, continuous backups to Amazon S3, and data replication across three distinct Availability Zones, which enhances data resilience and accessibility. This combination of features makes Amazon Aurora an appealing choice for businesses looking to leverage the cloud for their database needs while maintaining robust performance and security.
  • 31
    Apache Pinot Reviews
    Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues.
  • 32
    Oxla Reviews

    Oxla

    Oxla

    $50 per CPU core / monthly
    Designed specifically for optimizing compute, memory, and storage, Oxla serves as a self-hosted data warehouse that excels in handling large-scale, low-latency analytics while providing strong support for time-series data. While cloud data warehouses may suit many, they are not universally applicable; as operations expand, the ongoing costs of cloud computing can surpass initial savings on infrastructure, particularly in regulated sectors that demand comprehensive data control beyond mere VPC and BYOC setups. Oxla surpasses both traditional and cloud-based warehouses by maximizing efficiency, allowing for the scalability of expanding datasets with predictable expenses, whether on-premises or in various cloud environments. Deployment, execution, and maintenance of Oxla can be easily managed using Docker and YAML, enabling a range of workloads to thrive within a singular, self-hosted data warehouse. In this way, Oxla provides a tailored solution for organizations seeking both efficiency and control in their data management strategies.
  • 33
    BigObject Reviews
    At the core of our innovative approach lies in-data computing, a cutting-edge technology aimed at efficiently processing substantial volumes of data. Our leading product, BigObject, is a prime example of this technology; it is a time series database purposefully created to enable rapid storage and management of vast data sets. Leveraging in-data computing, BigObject has the capability to swiftly and continuously address diverse data streams without interruption. This time series database excels in both high-speed storage and data analysis, showcasing remarkable performance alongside robust complex query functionalities. By transitioning from a traditional relational data structure to a time-series model, it harnesses in-data computing to enhance overall database efficiency. The foundation of our technology is an abstract model, wherein all data resides within an infinite and persistent memory space, facilitating seamless storage and computation. This unique architecture not only optimizes performance but also paves the way for future advancements in data processing capabilities.
  • 34
    Imply Reviews
    Imply is a cutting-edge analytics platform that leverages Apache Druid to manage extensive, high-performance OLAP (Online Analytical Processing) tasks in real-time. It excels at ingesting data instantly, delivering rapid query results, and enabling intricate analytical inquiries across vast datasets while maintaining low latency. This platform is specifically designed for enterprises that require engaging analytics, real-time dashboards, and data-centric decision-making on a large scale. Users benefit from an intuitive interface for exploring data, enhanced by features like multi-tenancy, detailed access controls, and operational insights. Its distributed architecture and ability to scale make Imply particularly advantageous for applications in streaming data analysis, business intelligence, and real-time monitoring across various sectors. Furthermore, its capabilities ensure that organizations can efficiently adapt to increasing data demands and quickly derive actionable insights from their data.
  • 35
    QuestDB Reviews
    QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively.
  • 36
    Oracle Autonomous Database Reviews
    Oracle Autonomous Database is a cloud-based database solution that automates various management tasks, such as tuning, security, backups, and updates, through the use of machine learning, thereby minimizing the reliance on database administrators. It accommodates an extensive variety of data types and models, like SQL, JSON, graph, geospatial, text, and vectors, which empowers developers to create applications across diverse workloads without the necessity of multiple specialized databases. The inclusion of AI and machine learning features facilitates natural language queries, automatic data insights, and supports the creation of applications that leverage artificial intelligence. Additionally, it provides user-friendly tools for data loading, transformation, analysis, and governance, significantly decreasing the need for intervention from IT staff. Furthermore, it offers versatile deployment options, which range from serverless to dedicated setups on Oracle Cloud Infrastructure (OCI), along with the alternative of on-premises deployment using Exadata Cloud@Customer, ensuring flexibility to meet varying business needs. This comprehensive approach streamlines database management and empowers organizations to focus more on innovation rather than routine maintenance.
  • 37
    Infobright DB Reviews
    Infobright DB is an enterprise-grade database that utilizes a columnar storage architecture, enabling business analysts to efficiently analyze data and rapidly generate reports. This versatile database can be implemented both on-premise and in cloud environments. It is designed to store and analyze substantial amounts of big data, facilitating interactive business intelligence and handling complex queries with ease. By enhancing query performance and lowering storage costs, it significantly boosts overall efficiency in analytics and reporting processes. With capabilities to manage hundreds of terabytes of data, Infobright DB overcomes the limitations often faced by traditional databases. This solution supports big data applications while removing the need for indexing and partitioning, resulting in no administrative burden. In an era where machine data is growing exponentially, IgniteTech’s Infobright DB is purpose-built to deliver exceptional performance for large quantities of machine-generated information. Furthermore, it allows users to manage intricate ad hoc analytical environments without the heavy database administration demands seen in other solutions. This makes it an invaluable tool for organizations seeking to optimize their data handling and analysis.
  • 38
    VistaDB Reviews

    VistaDB

    VistaDB

    $1,595 per year
    Microsoft has invested significant effort in creating a robust synergy between .NET and SQL Server, and VistaDB encapsulates this strength in a compact and easy-to-deploy format. The VistaDB engine consists of a singular, lightweight managed assembly that can be integrated with your application, with each database represented as a standalone file. By leveraging Xamarin, it is possible to have a complete relational database management system (RDBMS) right on your mobile device. VistaDB serves as a fully compliant ADO.NET data provider, offering support for Entity Framework, ADO.NET, and Typed Datasets, alongside its own direct access API tailored for efficient cursor operations. Thanks to ADO.NET, VistaDB seamlessly integrates with a broad spectrum of third-party object-relational mappers (ORMs), reporting tools, and additional resources. It also fully embraces the ADO.NET provider factory model, enabling developers to create a unified codebase that can adapt to either VistaDB or SQL Server during runtime. This versatility extends to a multitude of applications built on ADO.NET, encompassing not just your own software but also various reporting systems, ORMs, and other data-centric libraries within the .NET ecosystem. With VistaDB’s capabilities, developers can harness the power of a full-fledged database system while enjoying the simplicity of deployment and use.
  • 39
    CrateDB Reviews
    The enterprise database for time series, documents, and vectors. Store any type data and combine the simplicity and scalability NoSQL with SQL. CrateDB is a distributed database that runs queries in milliseconds regardless of the complexity, volume, and velocity.
  • 40
    IBM Db2 Warehouse Reviews
    IBM® Db2® Warehouse delivers a client-managed, preconfigured data warehouse solution that functions effectively within private clouds, virtual private clouds, and various container-supported environments. This platform is crafted to serve as the perfect hybrid cloud option, enabling users to retain control over their data while benefiting from the flexibility typically associated with cloud services. Featuring integrated machine learning, automatic scaling, built-in analytics, and both SMP and MPP processing capabilities, Db2 Warehouse allows businesses to integrate AI solutions more swiftly and effortlessly. You can set up a pre-configured data warehouse in just minutes on your chosen supported infrastructure, complete with elastic scaling to facilitate seamless updates and upgrades. By implementing in-database analytics directly where the data is stored, enterprises can achieve quicker and more efficient AI operations. Moreover, with the ability to design your application once, you can transfer workloads to the most suitable environment—be it public cloud, private cloud, or on-premises—while requiring little to no modifications. This flexibility ensures that businesses can optimize their data strategies effectively across diverse deployment options.
  • 41
    IBM Netezza Performance Server Reviews
    Fully compatible with Netezza, this solution offers a streamlined command-line upgrade option. It can be deployed on-premises, in the cloud, or through a hybrid model. The IBM® Netezza® Performance Server for IBM Cloud Pak® for Data serves as a sophisticated platform for data warehousing and analytics, catering to both on-premises and cloud environments. With significant improvements in in-database analytics functions, this next-generation Netezza empowers users to engage in data science and machine learning with datasets that can reach petabyte levels. It includes features for detecting failures and ensuring rapid recovery, making it robust for enterprise use. Users can upgrade existing systems using a single command-line interface. The platform allows for querying multiple systems as a cohesive unit. You can select the nearest data center or availability zone, specify the desired compute units and storage capacity, and initiate the setup seamlessly. Furthermore, the IBM® Netezza® Performance Server is accessible on IBM Cloud®, Amazon Web Services (AWS), and Microsoft Azure, and it can also be implemented on a private cloud, all powered by the capabilities of IBM Cloud Pak for Data System. This flexibility enables organizations to tailor the deployment to their specific needs and infrastructure.
  • 42
    qikkDB Reviews
    QikkDB is a high-performance, GPU-accelerated columnar database designed to excel in complex polygon computations and large-scale data analytics. If you're managing billions of data points and require immediate insights, qikkDB is the solution you need. It is compatible with both Windows and Linux operating systems, ensuring flexibility for developers. The project employs Google Tests for its testing framework, featuring hundreds of unit tests alongside numerous integration tests to maintain robust quality. For those developing on Windows, it is advisable to use Microsoft Visual Studio 2019, with essential dependencies that include at least CUDA version 10.2, CMake 3.15 or a more recent version, vcpkg, and Boost libraries. Meanwhile, Linux developers will also require a minimum of CUDA version 10.2, CMake 3.15 or newer, and Boost for optimal operation. This software is distributed under the Apache License, Version 2.0, allowing for a wide range of usage. To simplify the installation process, users can opt for either an installation script or a Dockerfile to get qikkDB up and running seamlessly. Additionally, this versatility makes it an appealing choice for various development environments.
  • 43
    Google Cloud Bigtable Reviews
    Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard.
  • 44
    SAP Data Warehouse Cloud Reviews
    Integrate data within a business framework to enable users to derive insights through our comprehensive data and analytics cloud platform. The SAP Data Warehouse Cloud merges analytics and data within a cloud environment that features data integration, databases, data warehousing, and analytical tools, facilitating the emergence of a data-driven organization. Utilizing the SAP HANA Cloud database, this software-as-a-service (SaaS) solution enhances your comprehension of business data, allowing for informed decision-making based on up-to-the-minute information. Seamlessly connect data from various multi-cloud and on-premises sources in real-time while ensuring the preservation of relevant business context. Gain insights from real-time data and conduct analyses at lightning speed, made possible by the capabilities of SAP HANA Cloud. Equip all users with the self-service functionality to connect, model, visualize, and securely share their data in an IT-governed setting. Additionally, take advantage of pre-built industry and line-of-business content, templates, and data models to further streamline your analytics process. This holistic approach not only fosters collaboration but also enhances productivity across your organization.
  • 45
    datapine Reviews

    datapine

    RIB Software GmbH

    $249.00/month
    3 Ratings
    Datapine's dashboard and business intelligence software allows users to quickly turn data into actionable insights, and make data-driven decisions. Managers and data scientists can visualize and analyze complex data using a drag-and-drop interface. They can also ask important business questions and receive answers right away. It provides a wealth of innovative analytics features, including predictive analytics and interactive dashboards that allow for the creation of KPI-driven business dashboards. There are dozens of data connectors that connect to any common data source (databases and flat files, social media marketing analytics, CRM, ERP etc.). A wealth of pre-built dashboard templates for different business functions (marketing and sales management, HR, etc.) ), industries (retail and logistics, healthcare, market study, etc. Platforms (Google Analytics, Facebook and Twitter, Zendesk, etc. assist new users to get started quickly.