RaimaDB
RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times.
RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
EmbeddingGemma
EmbeddingGemma is a versatile multilingual text embedding model with 308 million parameters, designed to be lightweight yet effective, allowing it to operate seamlessly on common devices like smartphones, laptops, and tablets. This model, based on the Gemma 3 architecture, is capable of supporting more than 100 languages and can handle up to 2,000 input tokens, utilizing Matryoshka Representation Learning (MRL) for customizable embedding sizes of 768, 512, 256, or 128 dimensions, which balances speed, storage, and accuracy. With its GPU and EdgeTPU-accelerated capabilities, it can generate embeddings in a matter of milliseconds—taking under 15 ms for 256 tokens on EdgeTPU—while its quantization-aware training ensures that memory usage remains below 200 MB without sacrificing quality. Such characteristics make it especially suitable for immediate, on-device applications, including semantic search, retrieval-augmented generation (RAG), classification, clustering, and similarity detection. Whether used for personal file searches, mobile chatbot functionality, or specialized applications, its design prioritizes user privacy and efficiency. Consequently, EmbeddingGemma stands out as an optimal solution for a variety of real-time text processing needs.
Learn more
word2vec
Word2Vec is a technique developed by Google researchers that employs a neural network to create word embeddings. This method converts words into continuous vector forms within a multi-dimensional space, effectively capturing semantic relationships derived from context. It primarily operates through two architectures: Skip-gram, which forecasts surrounding words based on a given target word, and Continuous Bag-of-Words (CBOW), which predicts a target word from its context. By utilizing extensive text corpora for training, Word2Vec produces embeddings that position similar words in proximity, facilitating various tasks such as determining semantic similarity, solving analogies, and clustering text. This model significantly contributed to the field of natural language processing by introducing innovative training strategies like hierarchical softmax and negative sampling. Although more advanced embedding models, including BERT and Transformer-based approaches, have since outperformed Word2Vec in terms of complexity and efficacy, it continues to serve as a crucial foundational technique in natural language processing and machine learning research. Its influence on the development of subsequent models cannot be overstated, as it laid the groundwork for understanding word relationships in deeper ways.
Learn more