Best Timescale Alternatives in 2025
Find the top alternatives to Timescale currently available. Compare ratings, reviews, pricing, and features of Timescale alternatives in 2025. Slashdot lists the best Timescale alternatives on the market that offer competing products that are similar to Timescale. Sort through Timescale alternatives below to make the best choice for your needs
-
1
Google Cloud SQL
Google
520 RatingsCloud SQL is a fully managed relational database service that supports MySQL, PostgreSQL, and SQL Server. It includes rich extensions, configuration flags, and developer ecosystems. Cloud SQL offers $300 in credits for new customers. You won't pay until you upgrade. Reduce maintenance costs by using fully managed MySQL, PostgreSQL, and SQL Server databases. The SRE team provides 24/7 support for reliable and secure services. Data encryption in transit and at rest ensures the highest level of security. Private connectivity with Virtual Private Cloud, user-controlled network access, and firewall protection add an additional layer of safety. Compliant with SSAE 16, ISO 27001, PCI DSS, and HIPAA, you can trust your data to be protected. Scale your database instances with a single API request, whether you are just testing or need a highly available database in production. Standard connection drivers and integrated migration tools let you create and connect to a database in a matter of minutes. Transform your database management with AI-driven support in Gemini, currently available in preview on Cloud SQL. It enhances development, optimizes performance, and simplifies fleet management, governance, and migration. -
2
RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times. RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
-
3
Redis
Redis Labs
341 RatingsRedis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices. -
4
OpenTSDB
OpenTSDB
OpenTSDB comprises a Time Series Daemon (TSD) along with a suite of command line tools. Users primarily engage with OpenTSDB by operating one or more independent TSDs, as there is no centralized master or shared state, allowing for the scalability to run multiple TSDs as necessary to meet varying loads. Each TSD utilizes HBase, an open-source database, or the hosted Google Bigtable service for the storage and retrieval of time-series data. The schema designed for the data is highly efficient, enabling rapid aggregations of similar time series while minimizing storage requirements. Users interact with the TSD without needing direct access to the underlying storage system. Communication with the TSD can be accomplished through a straightforward telnet-style protocol, an HTTP API, or a user-friendly built-in graphical interface. To begin utilizing OpenTSDB, the initial task is to send time series data to the TSDs, and there are various tools available to facilitate the import of data from different sources into OpenTSDB. Overall, OpenTSDB's design emphasizes flexibility and efficiency for time series data management. -
5
ScaleGrid is a fully managed Database-as-a-Service (DBaaS) platform that helps you automate your time-consuming database administration tasks both in the cloud and on-premises. ScaleGrid makes it easy to provision, monitor, backup, and scale open-source databases. It offers advanced security, high availability, query analysis, and troubleshooting support to improve your deployments' performance. The following databases are supported: - MySQL - PostgreSQL - Redis™. - MongoDB®, database - Greenplum™ (coming soon) ScaleGrid supports both public and privately-owned clouds such as AWS, Azure and Google Cloud Platform (GCP), DigitalOcean and Linode, Oracle Cloud Infrastructure, (OCI), VMware, and OpenStack. ScaleGrid is used by thousands of developers, startups, as well as enterprise customers such as Accenture, Meteor and Atlassian. It handles all your database operations at any scale, so you can concentrate on your application performance.
-
6
Warp 10
SenX
Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc. -
7
Amazon Timestream
Amazon
Amazon Timestream is an efficient, scalable, and serverless time series database designed for IoT and operational applications, capable of storing and analyzing trillions of events daily with speeds up to 1,000 times faster and costs as low as 1/10th that of traditional relational databases. By efficiently managing the lifecycle of time series data, Amazon Timestream reduces both time and expenses by keeping current data in memory while systematically transferring historical data to a more cost-effective storage tier based on user-defined policies. Its specialized query engine allows users to seamlessly access and analyze both recent and historical data without the need to specify whether the data is in memory or in the cost-optimized tier. Additionally, Amazon Timestream features integrated time series analytics functions, enabling users to detect trends and patterns in their data almost in real-time, making it an invaluable tool for data-driven decision-making. Furthermore, this service is designed to scale effortlessly with your data needs while ensuring optimal performance and cost efficiency. -
8
GridDB
GridDB
GridDB utilizes multicast communication to form its cluster, so it's essential to configure the network for this purpose. Start by verifying the host name and IP address; you can do this by running the command “hostname -i” to check the host's IP address configuration. If the reported IP address matches the specified value below, you can proceed directly to the next section without any further network adjustments. GridDB is a database designed to manage a collection of data entries, each consisting of a key paired with several values. In addition to functioning as an in-memory database that organizes all data within the memory, it also supports a hybrid architecture that combines both memory and disk storage, which can include solid-state drives (SSDs). This flexibility allows for efficient data management and retrieval, catering to various application needs. -
9
InfluxDB
InfluxData
$0InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge. To get started, InfluxData offers free training through InfluxDB University. -
10
QuestDB
QuestDB
QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively. -
11
SiriDB
Cesbit
SiriDB is optimized for speed. Inserts and queries are answered quickly. You can speed up your development with the custom query language. SiriDB is flexible and can be scaled on the fly. There is no downtime when you update or expand your database. You can scale your database without losing speed. As we distribute your time series data across all pools, we make full use of all resources. SiriDB was designed to deliver unmatched performance with minimal downtime. A SiriDB cluster distributes time series across multiple pools. Each pool has active replicas that can be used for load balancing or redundancy. The database can still be accessed even if one of the replicas is unavailable. -
12
Apache Druid
Druid
Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions. -
13
Proficy Historian
GE Vernova
Proficy Historian stands out as a premier historian software solution designed to gather industrial time-series and A&E data at remarkable speeds, ensuring secure and efficient storage, distribution, and rapid access for analysis, ultimately enhancing business value. With a wealth of experience and a track record of thousands of successful implementations globally, Proficy Historian transforms how organizations operate and compete by making critical data accessible for analyzing asset and process performance. The latest version of Proficy Historian offers improved usability, configurability, and maintainability thanks to significant advancements in its architecture. Users can leverage the solution's powerful yet straightforward features to derive new insights from their equipment, process data, and business strategies. Additionally, the remote collector management feature enhances user experience, while horizontal scalability facilitates comprehensive data visibility across the enterprise, making it an essential tool for modern businesses. By adopting Proficy Historian, companies can unlock untapped potential and drive operational excellence. -
14
IBM Informix
IBM
IBM Informix® is a highly adaptable and efficient database that can effortlessly combine SQL, NoSQL/JSON, as well as time series and spatial data. Its flexibility and user-friendly design position Informix as a top choice for diverse settings, ranging from large-scale enterprise data warehouses to smaller individual application development projects. Moreover, due to its compact footprint and self-managing features, Informix is particularly advantageous for embedded data management applications. The rising demand for IoT data processing necessitates strong integration and processing capabilities, which Informix fulfills with its hybrid database architecture that requires minimal administrative effort and has a small memory footprint while delivering robust functionality. Notably, Informix is well-equipped for multi-tiered architectures that necessitate processing at various levels, including devices, gateway layers, and cloud environments. Furthermore, it incorporates native encryption to safeguard data both at rest and in transit. Additionally, Informix supports a flexible schema alongside multiple APIs and configurations, making it a versatile choice for modern data management challenges. -
15
CrateDB
CrateDB
The enterprise database for time series, documents, and vectors. Store any type data and combine the simplicity and scalability NoSQL with SQL. CrateDB is a distributed database that runs queries in milliseconds regardless of the complexity, volume, and velocity. -
16
Aiven for PostgreSQL
Aiven
$19 per monthExperience a fully managed and hosted PostgreSQL solution that delivers exceptional performance along with all the necessary extensions readily available. You can establish your fully managed PostgreSQL instance in under ten minutes, using our web console or through various programming methods such as API, CLI, Terraform provider, or Kubernetes operator. Our standby nodes automatically serve as read replicas, and you have the flexibility to generate additional read replicas across different public clouds and geographic regions, enabling the creation of multi-cloud architectures. With Point-In-Time Recovery, you can restore your data to any moment within your chosen retention timeframe. This fully managed SQL relational database is deployable in the cloud environment of your preference, offering a reputation for reliability, a comprehensive feature set, and outstanding performance. It is suitable for a wide range of applications, including location-based services, critical business solutions, or serving as a general transactional database to meet diverse needs. As a result, it serves as an excellent choice for organizations looking to enhance their data management capabilities effectively. -
17
Machbase
Machbase
Machbase is a leading time-series database designed for real-time storage and analysis of vast amounts of sensor data from various facilities. It stands out as the only database management system (DBMS) capable of processing and analyzing large datasets at remarkable speeds, showcasing its impressive capabilities. Experience the extraordinary processing speeds that Machbase offers! This innovative product allows for immediate handling, storage, and analysis of sensor information. It achieves rapid storage and querying of sensor data by integrating the DBMS directly into Edge devices. Additionally, it provides exceptional performance in data storage and extraction when operating on a single server. With the ability to configure multi-node clusters, Machbase offers enhanced availability and scalability. Furthermore, it serves as a comprehensive management solution for Edge computing, addressing device management, connectivity, and data handling needs effectively. In a fast-paced data-driven world, Machbase proves to be an essential tool for industries relying on real-time sensor data analysis. -
18
kdb+
KX Systems
Introducing a robust cross-platform columnar database designed for high-performance historical time-series data, which includes: - A compute engine optimized for in-memory operations - A streaming processor that functions in real time - A powerful query and programming language known as q Kdb+ drives the kdb Insights portfolio and KDB.AI, offering advanced time-focused data analysis and generative AI functionalities to many of the world's top enterprises. Recognized for its unparalleled speed, kdb+ has been independently benchmarked* as the leading in-memory columnar analytics database, providing exceptional benefits for organizations confronting complex data challenges. This innovative solution significantly enhances decision-making capabilities, enabling businesses to adeptly respond to the ever-evolving data landscape. By leveraging kdb+, companies can gain deeper insights that lead to more informed strategies. -
19
Riak TS
Riak
$0Riak®, TS is an enterprise-grade NoSQL Time Series Database that is specifically designed for IoT data and Time Series data. It can ingest, transform, store, and analyze massive amounts of time series information. Riak TS is designed to be faster than Cassandra. Riak TS masterless architecture can read and write data regardless of network partitions or hardware failures. Data is evenly distributed throughout the Riak ring. By default, there are three copies of your data. This ensures that at least one copy is available for reading operations. Riak TS is a distributed software system that does not have a central coordinator. It is simple to set up and use. It is easy to add or remove nodes from a cluster thanks to the masterless architecture. Riak TS's masterless architecture makes it easy for you to add or remove nodes from your cluster. Adding nodes made of commodity hardware to your cluster can help you achieve predictable and almost linear scale. -
20
Amazon FinSpace
Amazon
Amazon FinSpace streamlines the deployment of kdb Insights applications on AWS, making the process significantly easier. By automating the routine tasks necessary for provisioning, integrating, and securing the infrastructure needed for kdb Insights, Amazon FinSpace simplifies operations for its users. Furthermore, it offers intuitive APIs that enable customers to set up and initiate new kdb Insights applications in just a matter of minutes. This platform allows users the flexibility to transition their existing kdb Insights applications to AWS, harnessing the advantages of cloud computing without the burden of managing complex and expensive infrastructure. KX's kdb Insights serves as a robust analytics engine, tailored for the examination of both real-time and extensive historical time-series data. Frequently utilized by clients in Capital Markets, kdb Insights supports essential business functions such as options pricing, transaction cost analysis, and backtesting. Additionally, it eliminates the need to integrate more than 15 AWS services for the deployment of kdb, streamlining the entire process further. Overall, Amazon FinSpace empowers organizations to focus on their analytics while minimizing operational overhead. -
21
QuasarDB
QuasarDB
QuasarDB, the core of Quasar's intelligence, is an advanced, distributed, column-oriented database management system specifically engineered for high-performance timeseries data handling, enabling real-time processing for massive petascale applications. It boasts up to 20 times less disk space requirement, making it exceptionally efficient. The unmatched ingestion and compression features of QuasarDB allow for up to 10,000 times quicker feature extraction. This database can perform real-time feature extraction directly from raw data via an integrated map/reduce query engine, a sophisticated aggregation engine that utilizes SIMD capabilities of contemporary CPUs, and stochastic indexes that consume minimal disk storage. Its ultra-efficient resource utilization, ability to integrate with object storage solutions like S3, innovative compression methods, and reasonable pricing structure make it the most economical timeseries solution available. Furthermore, QuasarDB is versatile enough to operate seamlessly across various platforms, from 32-bit ARM devices to high-performance Intel servers, accommodating both Edge Computing environments and traditional cloud or on-premises deployments. Its scalability and efficiency make it an ideal choice for businesses aiming to harness the full potential of their data in real-time. -
22
ITTIA DB
ITTIA
The ITTIA DB suite brings together advanced features for time series, real-time data streaming, and analytics tailored for embedded systems, ultimately streamlining development processes while minimizing expenses. With ITTIA DB IoT, users can access a compact embedded database designed for real-time operations on resource-limited 32-bit microcontrollers (MCUs), while ITTIA DB SQL serves as a robust time-series embedded database that operates efficiently on both single and multicore microprocessors (MPUs). These ITTIA DB offerings empower devices to effectively monitor, process, and retain real-time data. Additionally, the products are specifically engineered to meet the needs of Electronic Control Units (ECUs) within the automotive sector. To ensure data security, ITTIA DB incorporates comprehensive protection mechanisms against unauthorized access, leveraging encryption, authentication, and the DB SEAL feature. Furthermore, ITTIA SDL adheres to the standards set forth by IEC/ISO 62443, reinforcing its commitment to safety. By integrating ITTIA DB, developers can seamlessly collect, process, and enhance incoming real-time data streams through a specialized SDK designed for edge devices, allowing for efficient searching, filtering, joining, and aggregating of data right at the edge. This comprehensive approach not only optimizes performance but also supports the growing demand for real-time data handling in today's technology landscape. -
23
kdb Insights
KX
kdb Insights is an advanced analytics platform built for the cloud, enabling high-speed real-time analysis of both live and past data streams. It empowers users to make informed decisions efficiently, regardless of the scale or speed of the data, and boasts exceptional price-performance ratios, achieving analytics performance that is up to 100 times quicker while costing only 10% compared to alternative solutions. The platform provides interactive data visualization through dynamic dashboards, allowing for immediate insights that drive timely decision-making. Additionally, it incorporates machine learning models to enhance predictive capabilities, identify clusters, detect patterns, and evaluate structured data, thereby improving AI functionalities on time-series datasets. With remarkable scalability, kdb Insights can manage vast amounts of real-time and historical data, demonstrating effectiveness with loads of up to 110 terabytes daily. Its rapid deployment and straightforward data ingestion process significantly reduce the time needed to realize value, while it natively supports q, SQL, and Python, along with compatibility for other programming languages through RESTful APIs. This versatility ensures that users can seamlessly integrate kdb Insights into their existing workflows and leverage its full potential for a wide range of analytical tasks. -
24
Fujitsu Enterprise Postgres
Fujitsu
Fujitsu Enterprise Postgres stands out as a highly dependable and powerful relational database tailored for businesses that demand exceptional query performance and consistent availability. Built on the acclaimed open-source platform PostgreSQL, it incorporates additional enterprise-level features that enhance both security and efficiency. The installation and management of Fujitsu Enterprise Postgres are handled by skilled database professionals from Fujitsu, who are also available to support the transition of data from your current database systems. Given its foundation in PostgreSQL, FEP offers remarkable compatibility with various systems and applications. Furthermore, the user-friendly, streamlined graphical interface significantly enhances the experience for database administrators carrying out essential functions like executing queries, conducting scans, and performing backups, ultimately making data management and reporting more user-friendly and effective. This comprehensive approach ensures that organizations can leverage their data to its fullest potential. -
25
CA IDMS
Broadcom Inc.
Experience outstanding and economical database performance while enjoying unparalleled flexibility with CA's established, web-based, high-efficiency mainframe relational database management system. This robust database offers dependable, scalable, secure, and cost-effective management solutions. It facilitates seamless participation in mobile-to-mainframe projects, cloud computing, web integration, and analytics through its open capabilities. Engineered for scalability, it adeptly addresses the growing demands of businesses while focusing on operational efficiency to help minimize expenses. Users of IDMS can swiftly and effortlessly access data to harness solutions that diagnose system challenges, automate processes and notifications, and generate insightful recommendations for optimization. Additionally, next-generation users can execute and automate IDMS administration tasks using familiar tools and scripting languages. Together, let’s embark on a collaborative journey to explore and understand your project requirements in depth. By aligning our expertise with your vision, we can craft tailored solutions that meet your specific needs. -
26
Amazon Aurora
Amazon
$0.02 per month 1 RatingAmazon Aurora is a cloud-based relational database that is compatible with both MySQL and PostgreSQL, merging the high performance and reliability of traditional enterprise databases with the ease and affordability of open-source solutions. Its performance surpasses that of standard MySQL databases by as much as five times and outpaces standard PostgreSQL databases by three times. Additionally, it offers the security, availability, and dependability synonymous with commercial databases, all at a fraction of the cost—specifically, one-tenth. Fully managed by the Amazon Relational Database Service (RDS), Aurora simplifies operations by automating essential tasks such as hardware provisioning, database configuration, applying patches, and conducting backups. The database boasts a self-healing, fault-tolerant storage system that automatically scales to accommodate up to 64TB for each database instance. Furthermore, Amazon Aurora ensures high performance and availability through features like the provision of up to 15 low-latency read replicas, point-in-time recovery options, continuous backups to Amazon S3, and data replication across three distinct Availability Zones, which enhances data resilience and accessibility. This combination of features makes Amazon Aurora an appealing choice for businesses looking to leverage the cloud for their database needs while maintaining robust performance and security. -
27
HEAVY.AI
HEAVY.AI
HEAVY.AI is a pioneer in accelerated analysis. The HEAVY.AI platform can be used by government and business to uncover insights in data that is beyond the reach of traditional analytics tools. The platform harnesses the huge parallelism of modern CPU/GPU hardware and is available both in the cloud or on-premise. HEAVY.AI was developed from research at Harvard and MIT Computer Science and Artificial Intelligence Laboratory. You can go beyond traditional BI and GIS and extract high-quality information from large datasets with no lag by leveraging modern GPU and CPU hardware. To get a complete picture of what, when and where, unify and explore large geospatial or time-series data sets. Combining interactive visual analytics, hardware accelerated SQL, advanced analytics & data sciences frameworks, you can find the opportunity and risk in your enterprise when it matters most. -
28
Alibaba Cloud TSDB
Alibaba
A Time Series Database (TSDB) is designed for rapid data input and output, allowing for swift reading and writing of information. It achieves impressive compression rates that lead to economical data storage solutions. Moreover, this service facilitates visualization techniques, such as precision reduction, interpolation, and multi-metric aggregation, alongside the processing of query results. By utilizing TSDB, businesses can significantly lower their storage expenses while enhancing the speed of data writing, querying, and analysis. This capability allows for the management of vast quantities of data points and enables more frequent data collection. Its applications span various sectors, including IoT monitoring, enterprise energy management systems (EMSs), production security oversight, and power supply monitoring. Additionally, TSDB is instrumental in optimizing database structures and algorithms, capable of processing millions of data points in mere seconds. By employing an advanced compression method, it can minimize each data point's size to just 2 bytes, leading to over 90% savings in storage costs. Consequently, this efficiency not only benefits businesses financially but also streamlines operational workflows across different industries. -
29
Postico
Postico
Postico serves as a user-friendly database client that allows users to connect to a local PostgreSQL server hosted on their Mac or to remote servers on different machines. For those looking to set up a local PostgreSQL server on their Mac, Postgres.app is highly recommended as it efficiently initiates a PostgreSQL server locally. Upon its first launch, Postgres.app automatically generates a new data directory and sets up an empty database, swiftly getting the server ready to accept connections. However, it's important to note that Postgres.app cannot operate if another PostgreSQL server is already active on your machine, so if you encounter any issues, consider deactivating or uninstalling any other PostgreSQL installations. After uninstalling, it’s advisable to reboot your computer to ensure that all changes take effect. To establish a connection to a PostgreSQL server using Postico, you will need to create a favorite, which stores the necessary connection parameters; while some of these parameters are optional, they can enhance the connection experience. In creating a favorite, you can ensure a smoother and more efficient connection process. -
30
Canary Historian
Canary
$9,970 one-time paymentThe remarkable aspect of the Canary Historian is its versatility, functioning equally well on-site and across an entire organization. It allows for local data logging while simultaneously transmitting that data to your enterprise historian. Moreover, as your needs expand, the solution adapts seamlessly to accommodate growth. A single Canary Historian is capable of logging over two million tags, and by clustering multiple units, you can manage tens of millions of tags effortlessly. These enterprise historian solutions can be deployed in your own data centers or on cloud platforms like AWS and Azure. Additionally, contrary to many other enterprise historian options, Canary Historians do not necessitate large specialized teams for maintenance. Serving as a NoSQL time series database, the Canary Historian implements loss-less compression algorithms, delivering exceptional performance without the need for data interpolation, which is a significant advantage for users. This dual capability ensures that both speed and efficiency are maximized in data handling. -
31
PostgreSQL
PostgreSQL Global Development Group
PostgreSQL stands out as a highly capable, open-source object-relational database system that has been actively developed for more than three decades, earning a solid reputation for its reliability, extensive features, and impressive performance. Comprehensive resources for installation and usage are readily available in the official documentation, which serves as an invaluable guide for both new and experienced users. Additionally, the open-source community fosters numerous forums and platforms where individuals can learn about PostgreSQL, understand its functionalities, and explore job opportunities related to it. Engaging with this community can enhance your knowledge and connection to the PostgreSQL ecosystem. Recently, the PostgreSQL Global Development Group announced updates for all supported versions, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23, which address 25 reported bugs from the past few months. Notably, this marks the final release for PostgreSQL 10, meaning that it will no longer receive any security patches or bug fixes going forward. Therefore, if you are currently utilizing PostgreSQL 10 in your production environment, it is highly recommended that you plan to upgrade to a more recent version to ensure continued support and security. Upgrading will not only help maintain the integrity of your data but also allow you to take advantage of the latest features and improvements introduced in newer releases. -
32
Blueflood
Blueflood
Blueflood is an advanced distributed metric processing system designed for high throughput and low latency, operating as a multi-tenant solution that supports Rackspace Metrics. It is actively utilized by both the Rackspace Monitoring team and the Rackspace public cloud team to effectively manage and store metrics produced by their infrastructure. Beyond its application within Rackspace, Blueflood also sees extensive use in large-scale deployments documented in community resources. The data collected through Blueflood is versatile, allowing users to create dashboards, generate reports, visualize data through graphs, or engage in any activities that involve analyzing time-series data. With a primary emphasis on near-real-time processing, data can be queried just milliseconds after it is ingested, ensuring timely access to information. Users send their metrics to the ingestion service and retrieve them from the Query service, while the system efficiently handles background rollups through offline batch processing, thus facilitating quick responses for queries covering extended time frames. This architecture not only enhances performance but also ensures that users can rely on rapid access to their critical metrics for effective decision-making. -
33
eXtremeDB
McObject
What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide. -
34
Baidu RDS
Baidu
$10.99 per monthRDS for MySQL, or Relational Database Service for MySQL, offers a robust and reliable cloud-based relational database solution designed for high performance. This service features an intuitive web interface for management, comprehensive data backup and recovery options, and extensive security management and monitoring capabilities. RDS for MySQL caters to various needs with its three available series: the basic stand-alone version, the dual high-availability version, and the Raft financial version. By default, it complies with standard database protocols and incorporates essential functionalities such as monitoring, automatic failover, data backup and recovery, and instance management. Additionally, it addresses customers’ advanced data management and storage needs through tools like slow SQL statistics and diagnosis, along with dependable services like cross-domain hot instance groups. It also enables disaster recovery within a single availability zone as well as across multiple zones, ensuring maximum data protection and availability. This comprehensive suite of features makes RDS for MySQL an optimal choice for businesses seeking efficient database management solutions. -
35
LeanXcale
LeanXcale
$0.127 per GB per monthLeanXcale is a rapidly scalable database that merges the features of both SQL and NoSQL systems. It is designed to handle large volumes of both batch and real-time data pipelines, ensuring that this data is accessible through SQL or GIS for diverse applications, including operational tasks, analytics, dashboard creation, or machine learning processes. Regardless of the technology stack in use, LeanXcale offers users the flexibility of SQL and NoSQL interfaces. The KiVi storage engine functions as a relational key-value data repository, enabling data access not only via the conventional SQL API but also through a direct ACID-compliant key-value interface. This particular interface facilitates high-speed data ingestion, optimizing efficiency by eliminating the overhead associated with SQL processing. Furthermore, its highly scalable and distributed storage engine spreads data across the cluster, thereby enhancing both performance and reliability while accommodating growing data needs seamlessly. -
36
Azure Time Series Insights
Microsoft
$36.208 per unit per monthAzure Time Series Insights Gen2 is a robust and scalable IoT analytics service that provides an exceptional user experience along with comprehensive APIs for seamless integration into your current workflow or application. This platform enables the collection, processing, storage, querying, and visualization of data at an Internet of Things (IoT) scale, ensuring that the data is highly contextualized and specifically tailored for time series analysis. With a focus on ad hoc data exploration and operational analysis, it empowers users to identify hidden trends, detect anomalies, and perform root-cause investigations. Furthermore, Azure Time Series Insights Gen2 stands out as an open and adaptable solution that caters to the diverse needs of industrial IoT deployments, making it an invaluable tool for organizations looking to harness the power of their data. By leveraging its capabilities, businesses can gain deeper insights into their operations and make informed decisions to drive efficiency and innovation. -
37
KS DB Merge Tools
KS DB Merge Tools
$65 5 RatingsKS DB Merge Tools is an easy to use diff & merge tool for MySQL, MariaDB, Oracle Database, SQL Server, PostgreSQL, MS Access, SQLite and Cross-DBMS databases allowing to compare and sync both schema and data. Starting with a schema changes summary, results can be narrowed down to object lists of particular object type (table definitions, views, etc.), and then down to definition of particular object. Data changes can be retrieved as a high-level list of changes totals across all tables in the database, each total row count can be observed as a side-by-side list of rows for the given table, each changed row can be analyzed for changes in each column. Various diff results provide quick filters to show only new/changed/new+changed items (schema objects or table data rows), ability to select required changed items and generate scripts to apply these changes to the other side database. This script can be executed immediately or saved for future use. -
38
CockroachDB
Cockroach Labs
1 RatingCockroachDB: Cloud-native distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services need a database that can scale across clouds, reduces operational complexity, and improves reliability. CockroachDB provides resilient, distributed SQL with ACID transactions. Data partitioned by geography is also available. Combining CockroachDB and orchestration tools such as Mesosphere DC/OS and Kubernetes to automate mission-critical applications can speed up operations. -
39
VictoriaMetrics
VictoriaMetrics
$0VictoriaMetrics is a cost-effective, scalable monitoring solution that can also be used as a time series database. It can also be used to store Prometheus' long-term data. VictoriaMetrics is a single executable that does not have any external dependencies. All configuration is done using explicit command-line flags and reasonable defaults. It provides global query view. Multiple Prometheus instances, or other data sources, may insert data into VictoriaMetrics. Later this data may be queried via a single query. It can handle high cardinality and high churn rates issues by using a series limiter. -
40
OneTick
OneMarketData
OneTick Database has gained widespread acceptance among top banks, brokerages, data vendors, exchanges, hedge funds, market makers, and mutual funds due to its exceptional performance, advanced features, and unparalleled functionality. Recognized as the foremost enterprise solution for capturing tick data, conducting streaming analytics, managing data, and facilitating research, OneTick stands out in the financial sector. Its unique capabilities have captivated numerous hedge funds and mutual funds, alongside traditional financial institutions, enhancing their operational efficiency. The proprietary time series database offered by OneTick serves as a comprehensive multi-asset class platform, integrating a streaming analytics engine and embedded business logic that obviates the necessity for various separate systems. Furthermore, this robust system is designed to deliver the lowest total cost of ownership, making it an attractive option for organizations aiming to optimize their data management processes. With its innovative approach and cost-effectiveness, OneTick continues to redefine industry standards. -
41
Circonus IRONdb
Circonus
Circonus IRONdb simplifies the management and storage of limitless telemetry data, effortlessly processing billions of metric streams. It empowers users to recognize both opportunities and challenges in real time, offering unmatched forensic, predictive, and automated analytics capabilities. With the help of machine learning, it automatically establishes a "new normal" as your operations and data evolve. Additionally, Circonus IRONdb seamlessly integrates with Grafana, which natively supports our analytics query language, and is also compatible with other visualization tools like Graphite-web. To ensure data security, Circonus IRONdb maintains multiple copies across a cluster of IRONdb nodes. While system administrators usually oversee clustering, they often dedicate considerable time to its upkeep and functionality. However, with Circonus IRONdb, operators can easily configure their clusters to run autonomously, allowing them to focus on more strategic tasks rather than the tedious management of their time series data storage. This streamlined approach not only enhances efficiency but also maximizes resource utilization. -
42
Google Cloud Bigtable
Google
Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard. -
43
ArcadeDB
ArcadeDB
FreeEffortlessly handle intricate models with ArcadeDB while ensuring no compromises are made. Say goodbye to the concept of Polyglot Persistence; there's no need to juggle multiple databases. With ArcadeDB's Multi-Model database, you can seamlessly store graphs, documents, key values, and time series data in one unified solution. As each model is inherently compatible with the database engine, you can avoid the delays caused by translation processes. Powered by advanced Alien Technology, ArcadeDB's engine can process millions of records every second. Notably, the speed of data traversal remains constant regardless of the database's size, whether it houses a handful of records or billions. ArcadeDB is versatile enough to function as an embedded database on a single server and can easily scale across multiple servers using Kubernetes. Its compact design allows it to operate on any platform while maintaining a minimal footprint. Your data's security is paramount; our robust, fully transactional engine guarantees durability for mission-critical production databases. Additionally, ArcadeDB employs a Raft Consensus Algorithm to ensure consistency and reliability across multiple servers, making it a top choice for data management. In an era where efficiency and reliability are crucial, ArcadeDB stands out as a comprehensive solution for diverse data storage needs. -
44
SAP SQL Anywhere
SAP
$195 per licenseManage your enterprise seamlessly from any location with the innovative relational database management system (RDBMS) offerings from SAP SQL Anywhere. This solution ensures secure and dependable data management for servers lacking a dedicated database administrator, while providing synchronization capabilities for thousands of mobile devices, IoT systems, and remote settings. By enabling the delivery of essential business information to remote offices and mobile users, organizations can enhance real-time decision-making on the ground. Mobile applications can operate reliably and efficiently without the need for on-site technical expertise, offering an uninterrupted experience for mobile and remote employees, even in offline scenarios. Additionally, the system simplifies data maintenance with integrated self-management features that empower users to quickly and effectively address any issues. With robust encryption capabilities, your data remains protected and secure throughout transmission and exchange, safeguarding sensitive information from potential threats. This comprehensive approach not only boosts productivity but also fosters an environment of trust and reliability for your business operations. -
45
SAP HANA
SAP
SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.