Best Tidy3D Alternatives in 2025
Find the top alternatives to Tidy3D currently available. Compare ratings, reviews, pricing, and features of Tidy3D alternatives in 2025. Slashdot lists the best Tidy3D alternatives on the market that offer competing products that are similar to Tidy3D. Sort through Tidy3D alternatives below to make the best choice for your needs
-
1
FEATool Multiphysics
Precise Simulation
1 RatingFEATool Multiphysics – "Physics Simulator Made Easy" – a fully integrated physics simulation, FEA and CFD toolbox. FEATool Multiphysics provides a fully integrated simulation platform that includes a unified user interface for several multi-physics solvers such as OpenFOAM and Computational fluid dynamics (CFD), including SU2 Code and FEniCS. This allows users to model coupled physics phenomena, such as those found in fluid flow and heat transfer, structural, electromagnetics acoustics and chemical engineering applications. FEATool multiphysics is a trusted tool for engineers and researchers in the energy, automotive and semi-conductor industries. -
2
VSim
Tech-X
VSim is a sophisticated Multiphysics Simulation Software tailored for design engineers and research scientists who seek accurate solutions for complex challenges. Its exceptional integration of Finite-Difference Time-Domain (FDTD), Particle-in-Cell (PIC), and Charged Fluid (Finite Volume) methodologies ensures reliable outcomes across various applications, including plasma modeling. As a parallel software tool, VSim adeptly tackles large-scale problems, with simulations that execute rapidly thanks to algorithms optimized for high-performance computing environments. Renowned by researchers in over 30 countries and utilized by professionals across fields such as aerospace and semiconductor manufacturing, VSim guarantees results with verified accuracy that users can depend on. Developed by a dedicated group of computational scientists, Tech-X’s software has garnered thousands of citations in scientific literature, and VSim is prominently featured in many leading research institutions worldwide. Furthermore, its continued evolution reflects the commitment to meeting the ever-growing demands of modern scientific inquiry. -
3
Ansys Lumerical FDTD
Ansys
Ansys Lumerical FDTD stands as the premier choice for simulating nanophotonic devices, processes, and materials. Its integrated design environment features robust scripting capabilities, sophisticated post-processing options, and optimization routines. This meticulously refined application of the FDTD method ensures exceptional solver performance across a wide range of applications. With these tools at your disposal, you can concentrate on the creative aspects of your design while relying on the software to handle the technical complexities. The platform offers a variety of advantages that facilitate flexible and customizable modeling and simulation. By leveraging Ansys Lumerical FDTD, you can effectively model nanophotonic devices, processes, and materials, thus empowering your innovative pursuits. Ultimately, Lumerical FDTD exemplifies excellence in the field, delivering dependable, powerful, and scalable solver performance tailored to meet diverse application needs. -
4
Abaqus
Dassault Systèmes
Currently, engineering teams frequently rely on specialized simulation tools from various vendors to assess different design characteristics, which can lead to inefficiencies and higher costs due to the use of multiple software solutions. To address these challenges, SIMULIA offers a comprehensive suite of cohesive analysis products that enable users with varying levels of simulation knowledge and expertise to collaborate effectively while sharing simulation data and approved methodologies without compromising information integrity. The Abaqus Unified FEA product suite provides robust and comprehensive solutions for both standard and advanced engineering challenges, catering to a wide range of industrial applications. In the automotive sector, engineering teams can analyze complete vehicle loads, dynamic vibrations, multibody systems, impact and crash scenarios, nonlinear static situations, thermal interactions, and acoustic-structural relationships, all while utilizing a unified model data structure and integrated solver technology. This seamless integration enhances collaboration and improves the overall efficiency of the engineering process, allowing teams to innovate more rapidly. -
5
Simcenter Nastran
Siemens
Simcenter Nastran stands out as a leading finite element method (FEM) solver known for its exceptional computational performance, precision, dependability, and scalability. This comprehensive tool provides robust solutions for various applications, including linear and nonlinear structural analysis, structural dynamics, acoustics, rotor dynamics, aeroelasticity, thermal analysis, and optimization. One of the key benefits of having such a diverse array of solutions within a single solver is that it standardizes input/output file formats across all types of analyses, significantly streamlining the modeling process. Whether utilized as an independent enterprise solver or integrated within Simcenter 3D, Simcenter Nastran is instrumental for manufacturers and engineering firms across several sectors, including aerospace, automotive, electronics, heavy machinery, and medical devices. By catering to their vital engineering computing requirements, it enables these industries to deliver safe, reliable, and optimized designs while adhering to increasingly tighter design timelines. This versatility and efficiency make Simcenter Nastran an invaluable asset in the modern engineering landscape. -
6
Ansys Maxwell
Ansys
Ansys Maxwell serves as a powerful electromagnetic field solver tailored for electric machines, transformers, wireless charging systems, permanent magnet latches, actuators, and various electromechanical devices. It adeptly addresses the challenges of static, frequency-domain, and time-varying electric and magnetic fields. Additionally, Maxwell comes equipped with specialized design interfaces specifically for electric machines and power converters. With the capabilities of Maxwell, users can accurately analyze the nonlinear and transient behaviors of electromechanical components, as well as their impact on drive circuits and control system designs. By utilizing Maxwell’s state-of-the-art electromagnetic field solvers in conjunction with integrated circuit and systems simulation technologies, engineers can gain insights into the performance of electromechanical systems well before any physical prototypes are created. Moreover, Maxwell is recognized for delivering reliable simulations of low-frequency electromagnetic fields pertinent to industrial components, making it a valuable tool in the design and analysis process. This comprehensive approach not only enhances design efficiency but also aids in minimizing potential issues during the development stage. -
7
Analytic Solver
Frontline Systems
Analytic Solver Optimization is fully compatible with the Excel Solver, designed to tackle any conventional optimization issue, regardless of its size or type, without accommodating uncertainty. What sets it apart from other optimization tools is its ability to conduct an algebraic analysis of your model's structure while efficiently utilizing multiple cores on your computer for enhanced performance. This software can manage nonlinear models that are ten times larger and linear models that are forty times larger than those solvable by the Excel Solver, providing solutions at a significantly faster pace, along with the capability to integrate Solver Engines that can accommodate millions of variables. Additionally, Analytic Solver Simulation offers an intuitive interface for rigorous Monte Carlo simulations, risk analysis, decision trees, and simulation optimization, all powered by Frontline's sophisticated Evolutionary Solver. It features an impressive array of 60 probability distributions, including complex compound distributions, automatic fitting for these distributions, along with rank-order and copula-based correlations, plus 80 different statistics and risk measures, and tools for Six Sigma analysis, as well as multiple parameterized simulations that enhance decision-making processes. The comprehensive functionality of this software makes it an essential tool for professionals seeking to leverage advanced optimization and simulation techniques in their work. -
8
Ansys Mechanical
Ansys
1 RatingAnsys Mechanical stands out as an exceptional finite element solver, featuring capabilities in structural, thermal, acoustics, transient, and nonlinear analyses to enhance your modeling processes. This powerful tool allows you to tackle intricate structural engineering challenges, facilitating quicker and more informed design choices. The suite's finite element analysis (FEA) solvers permit the customization and automation of solutions for structural mechanics issues, enabling the examination of various design scenarios through parameterization. With its extensive array of analysis tools, Ansys Mechanical provides a versatile environment, guiding users from geometry preparation to integrating additional physics for enhanced accuracy. Its user-friendly and adaptable interface ensures that engineers at any experience level can swiftly obtain reliable results. Overall, Ansys Mechanical fosters an integrated platform that leverages finite element analysis (FEA) for comprehensive structural evaluations, proving invaluable for modern engineering projects. -
9
Calculix
Calculix
CalculiX allows users to create, analyze, and process finite element models efficiently. It features an interactive 3D pre-and post-processor that utilizes the OpenGL API for enhanced visualization. The solver within CalculiX is capable of handling both linear and non-linear calculations, offering solutions for static, dynamic, and thermal problems. Since it employs the Abaqus input format, users can leverage commercial pre-processors seamlessly. Furthermore, the pre-processor can generate mesh-related data compatible with Nastran, Abaqus, Ansys, Code-Aster, as well as free computational fluid dynamics tools such as Dolfyn, Duns, ISAAC, and OpenFOAM. A straightforward step reader is also integrated into the system. Additionally, there are options for external CAD interfaces, broadening its usability. This versatile program is designed to operate on various Unix platforms like Linux and Irix, as well as on MS Windows, making it accessible to a wide range of users. -
10
XFdtd
Remcom
$14750.00/one-time/ user XFdtd is a comprehensive 3D electromagnetic simulation software developed by Remcom. This powerful and feature-rich solver for electromagnetic simulations delivers exceptional computing performance and eases the process of analyzing intricate electromagnetic challenges. The software supports various applications, including the design of microwave devices and antennas, as well as radar and scattering analysis. Additionally, XFdtd is utilized in biomedical fields, automotive radar systems, waveguide studies, military and defense projects, RFID technology, and electromagnetic compatibility/electromagnetic interference assessments, among others. Its versatility makes it an essential tool for engineers and researchers alike. -
11
Simcenter MAGNET
Siemens
Simcenter MAGNET serves as an advanced simulation tool for analyzing electromagnetic fields, enabling users to predict the performance of various components such as motors, generators, sensors, transformers, actuators, and solenoids that involve permanent magnets or coils. By facilitating low-frequency electromagnetic field simulations, Simcenter MAGNET offers comprehensive modeling capabilities that accurately represent the underlying physics of electromagnetic devices. Among its features are the modeling of manufacturing processes, temperature-sensitive material properties, and the intricate behavior of magnetization and de-magnetization, along with vector hysteresis models. The software’s built-in motion solver incorporates a six-degree-of-freedom functionality, which allows for the precise modeling and analysis of complex scenarios such as magnetic levitation and intricate motion dynamics. This advanced capability is bolstered by innovative smart re-meshing technology, ensuring that even the most challenging electromagnetic problems can be effectively addressed. Consequently, Simcenter MAGNET stands out as an essential tool for engineers and designers looking to optimize electromagnetic systems in a range of applications. -
12
RadCAD
C&R Technologies
RadCAD employs an advanced, oct-tree accelerated Monte-Carlo ray tracing algorithm to calculate radiation exchange factors and view factors with remarkable speed. The enhancements introduced by C&R Technologies in the ray tracing methodology have led to the development of a highly efficient thermal radiation analysis tool. By utilizing finite difference "conics" or curved finite elements from TD Direct®, RadCAD is capable of precisely simulating diffuse and specular reflections as well as transmissive surfaces, independent of node density. The thermal solution's requirements govern the node quantity, rather than the precision needed for radiation calculations. Furthermore, RadCAD allows users to create custom databases that specify optical properties, with each surface coating detailing its absorptivity, transmissivity, reflectivity, and specularity in both solar and infrared wavelengths. These optical characteristics can be tailored to account for variations in incident angles or wavelength dependencies, enhancing the accuracy and relevance of thermal modeling. Ultimately, this level of customization ensures that RadCAD meets diverse analytical needs across various applications. -
13
SPACE GASS
SPACE GASS
$600 per monthSPACE GASS is a versatile 3D analysis and design software tailored for structural engineers. Its broad array of features accommodates everything from beams and trusses to complex structures like buildings, towers, tanks, cable systems, and bridges. Users can benefit from a powerful 64-bit multi-core solver, impressive 3D visualizations, and specialized elements including plate, frame, cable, and tension/compression-only types, as well as tools for moving loads and integrations with various CAD and building management systems. Choosing SPACE GASS means optimizing your resources with cost-effective, safe, and efficient designs. The user-friendly graphical interface allows for immediate visual feedback on changes, enhancing the design process. Additionally, a rapid sparse matrix solver takes full advantage of multi-core processing capabilities for increased efficiency. The software features a diverse suite of structural modeling tools, analysis methodologies, and design modules to meet various engineering needs. Moreover, an array of comprehensive video tutorials is available to guide users through complex tasks effectively. Finally, the software can be configured for either stand-alone use or floating network systems, adding flexibility for different working environments. -
14
CST Studio Suite
Dassault Systèmes
CST Studio Suite is an advanced 3D electromagnetic (EM) analysis software designed to facilitate the design, assessment, and optimization of various electromagnetic components and systems. It offers a unified user interface that houses solvers for a diverse range of applications spanning the entire electromagnetic spectrum. These solvers can be integrated to conduct hybrid simulations, providing engineers the versatility to efficiently analyze complex systems composed of multiple components. Furthermore, collaboration with other SIMULIA products enhances the capability for EM simulation to be seamlessly incorporated into the overall design process, influencing development from the initial phases. Typical applications of EM analysis include evaluating antenna and filter performance, ensuring electromagnetic compatibility and interference compliance, assessing human exposure to EM fields, analyzing electro-mechanical interactions in motors and generators, and studying thermal impacts on high-power devices. The ability to conduct such comprehensive analyses helps drive innovation in various industries that rely on electromagnetic technology. -
15
WELSIM
WelSimulation LLC
$45 per user per monthEngineers and researchers can use WELSIM finite-element analysis software to create prototype virtual products and conduct simulation studies. -
16
COMSOL Multiphysics
Comsol Group
1 RatingUtilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively. -
17
Solver SDK
Frontline Systems
$2495 one-time paymentIncorporate optimization and simulation models into your desktop, web, or mobile applications effortlessly by utilizing consistent high-level objects such as Problem, Solver, Variable, and Function, along with their respective collections, properties, and methods across various programming languages. This uniformity extends to a standardized object-oriented API that is accessible remotely via Web Services WS-* standards for clients using languages like PHP, JavaScript, and C#. Additionally, procedural languages are able to invoke traditional calls that align intuitively with the properties and methods of the object-oriented API. The suite of optimization techniques available encompasses linear and quadratic programming, mixed-integer programming, smooth nonlinear optimization, as well as global optimization and non-smooth evolutionary and tabu search methodologies. Furthermore, premier optimization tools from Gurobi™, XPRESS™, and MOSEK™ for handling linear, quadratic, and conic models, along with KNITRO™, SQP, and GRG methods for nonlinear challenges, can be seamlessly integrated into the Solver SDK. You can also effortlessly generate a sparse DoubleMatrix object containing an impressive 1 million rows and columns, making it easier to handle large datasets. This flexibility in creating and managing complex optimization problems allows developers to tailor solutions that meet specific application needs efficiently. -
18
Inventor Nastran
Autodesk
Inventor® Nastran® is a finite element analysis (FEA) tool integrated within CAD software, enabling engineers and analysts to perform a diverse range of studies using various materials. This software provides comprehensive simulation capabilities that encompass both linear and nonlinear stress analysis, dynamic simulations, and heat transfer assessments. It is exclusively accessible through the Product Design & Manufacturing Collection, which includes a suite of powerful tools designed to enhance workflows within Inventor. In addition to advanced simulation features, this collection also offers 5-axis CAM, nesting tools, and access to software like AutoCAD and Fusion 360, ensuring a holistic approach to product design and manufacturing processes. By utilizing Inventor Nastran, professionals can streamline their analysis and improve their design outcomes significantly. -
19
AxisVM
InterCAD
$500 one-time paymentAxisVM is primarily utilized for designing buildings, along with industrial and geotechnical structures. Its robust finite element solver combined with practical modeling tools makes it suitable for bridge design, as well as for developing composite structures, machines, and vehicles. In addition to standard configurations, users have access to optional design modules tailored for structures constructed from reinforced concrete, steel, timber, and masonry members and connections. Furthermore, the software's unique elements and advanced analysis capabilities enable the successful design of innovative and custom structures. Additionally, users can generate comprehensive reports that include tables, drawings, and detailed design calculations, complete with tailored headings and text. These reports are dynamically updated, automatically reflecting the latest model data and results, ensuring accuracy and relevance in documentation. This feature enhances user efficiency by simplifying the reporting process. -
20
SimScale, a web-based cloud application, plays an important role in simulation software for many industries. The platform supports Computational Fluid Dynamics, Finite Element Analysis (FEA), as well as Thermal Simulation. It also provides 3D simulation, continuous modeling, motion & dynamic modelling.
-
21
GT STRUDL® stands out as a comprehensive structural engineering software that integrates 3D CAD modeling and advanced 64-bit computation solvers in its various versions. This software provides a full suite of tools for analyzing a wide array of structural engineering and finite element analysis challenges, encompassing both linear and nonlinear static and dynamic analyses, achieving high accuracy in significantly less time compared to most other design software available. Designed to assist structural engineers in developing safe and efficient designs, GT STRUDL effectively addresses the complexities that arise across multiple industries such as power generation, civil engineering, marine applications, and infrastructure development. Moreover, quality software like GT STRUDL boasts a range of features, including interoperability, structural analysis capabilities, database-driven design, and quality assurance, all aimed at enhancing the engineering design process. This robust combination of functionality and efficiency makes GT STRUDL a valuable asset for engineers tackling intricate projects.
-
22
DIGIMU
TRANSVALOR
DIGIMU® creates digital polycrystalline microstructures that accurately reflect the material's heterogeneities, ensuring compliance with the intricate topological features of the microstructure. The boundary conditions applied to the Representative Elementary Volume (REV) mimic the experiences of a material point at the macroscopic level, particularly during the thermomechanical cycles relevant to that specific point. Utilizing a Finite Element formulation, the software simulates the various physical phenomena occurring in metal forming processes, such as recrystallization, grain growth, and Zener pinning caused by second phase particles. To enhance digital accuracy and minimize computation times, DIGIMU® employs advanced automated anisotropic meshing and remeshing adaptation technology, which allows for a detailed representation of grain boundaries while optimizing the number of elements used. This innovative approach not only streamlines the computational process but also improves the reliability of the simulations, making it a powerful tool for material scientists. -
23
MSC Apex
MSC Software
GMTO has adopted MSC Apex to create a unified CAE environment that supports the virtual development of products, particularly aimed at ensuring that the colossal telescope can endure earthquakes in Chile while contributing to our understanding of the cosmos. This platform offers a user-friendly experience that many engineers find captivating, often describing it as ‘addictive’ due to its game-like qualities. MSC Apex features a structured package that facilitates scenario definition and result analysis, alongside integrated solver methodologies. What sets this solution apart is its innovative combination of computational components and assembly technology within a generative framework, allowing for both interactive and incremental analyses. The seamless integration of the user interface with solver methods empowers users to validate their finite element models to ensure they are ready for solving. Additionally, users can initiate a series of solver checks on specific parts and assemblies, with the results and diagnostics clearly presented in the Analysis Readiness panel, enhancing the overall efficiency of the validation process. This capability not only streamlines workflow but also boosts user confidence in their models before proceeding with extensive simulations. -
24
HyperWorks
Altair Engineering
HyperWorks offers easy-to-learn and effective workflows that leverage domain expertise and increase team productivity. This allows for efficient development of today's complex and connected products. Engineers can now move seamlessly from one domain to another with the new HyperWorks experience. They can even create reports without ever leaving the model. HyperWorks allows you to create, explore, and optimize designs. These designs can accurately model structures, mechanisms and fluids as well as electrical, embedded software, systems designs, and manufacturing processes. The solution-specific workflows improve a variety of engineering processes, including fatigue analysis, CFD modeling, concept design optimization, design exploration, and CFD modeling. Each interface is intuitive and well-designed, and differentiated for each user. It's also consistent and easy to use. -
25
Creo Simulation
PTC
Elevate your product design by incorporating simulation and analysis, which helps minimize expensive physical prototyping while enhancing the durability, reliability, and safety of your products. Employing digital prototypes to assess the performance of your designs in real-world scenarios is crucial for successful product development. Creo Simulation is specifically tailored for engineers, featuring a robust suite of structural, thermal, and vibration analysis tools along with an extensive range of finite element analysis (FEA) capabilities. With Creo Simulation, you can effectively evaluate and affirm the performance of your 3D virtual prototypes prior to producing the first physical component. We provide adaptable and innovative simulation solutions to meet the distinct needs of our customers. This section serves as a resource to explore our offerings tailored to your requirements, and should you have any inquiries about our toolset, please do not hesitate to reach out to a Creo representative for assistance. This proactive approach ensures that your products not only meet but exceed expectations in their respective markets. -
26
GENOA 3DP
AlphaSTAR
GENOA 3DP is a comprehensive software suite and design tool tailored for additive manufacturing across polymers, metals, and ceramics. Its simulate-to-print capabilities highlight strong performance and user-friendly interaction, making it an effective choice for diverse applications. With the ability to deliver precision at the micro-scale and significantly minimize material waste and engineering time, GENOA 3DP can be swiftly incorporated into any manufacturing process to ensure optimal additive manufacturing outcomes. Rooted in advanced failure analysis techniques and enhanced by multi-scale material modeling, this tool empowers engineers to reliably forecast issues like voids, net shapes, residual stress, and crack propagation in as-built additive manufacturing components. By offering a consistent approach to enhance part quality, decrease scrap rates, and adhere to specifications, GENOA 3DP effectively connects the fields of material science and finite element analysis, ultimately driving innovation in the manufacturing sector. This integration fosters a deeper understanding of material behaviors, paving the way for more efficient production methodologies. -
27
SOLIDWORKS Simulation
SolidWorks
Subjecting your designs to real-world scenarios can significantly enhance product quality while simultaneously minimizing the costs associated with prototyping and physical testing. The SOLIDWORKS® Simulation suite offers a user-friendly collection of structural analysis tools that employ Finite Element Analysis (FEA) to forecast how a product will behave in actual physical conditions by virtually evaluating CAD models. This comprehensive portfolio is equipped with capabilities for both linear and non-linear static and dynamic analyses. With SOLIDWORKS Simulation Professional, you can refine your designs by assessing mechanical resistance, durability, topology, natural frequencies, as well as examining heat transfer and potential buckling issues. Additionally, it facilitates sequential multi-physics simulations to enhance design accuracy. On the other hand, SOLIDWORKS Simulation Premium allows for an in-depth assessment of designs concerning nonlinear and dynamic responses, dynamic loading conditions, and composite materials. This advanced tier also features three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, ensuring a thorough evaluation of your engineering projects. By leveraging these powerful tools, engineers can achieve greater design confidence and innovation. -
28
Patran
Hexagon AB
Patran offers an extensive array of tools designed to facilitate the development of models ready for analysis across various domains, including linear and nonlinear problems, explicit dynamics, thermal analysis, and more within finite element solutions. Its geometry cleanup features assist engineers in efficiently addressing issues like gaps and slivers present in CAD designs, while solid modeling capabilities allow users to construct models from the ground up. The software simplifies the mesh generation process on both surfaces and solids through a combination of fully automated meshing routines and manual techniques that afford users greater precision. Additionally, Patran includes built-in options for setting up loads, boundary conditions, and analyses compatible with leading finite element solvers, significantly reducing the need for adjusting input files. With its robust and industry-validated functionalities, Patran ensures that virtual prototyping is not only swift but also effective, enabling users to assess product performance against specific requirements and refine their designs accordingly. As a result, engineers can spend less time on setup and more on innovation and optimization. -
29
CONSELF
CONSELF
By utilizing CONSELF, you can harness the power of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) to enhance your product designs: reduce drag and losses related to fluid dynamics, boost efficiency, optimize heat exchange capabilities, assess pressure loads, confirm material strength, analyze deformation in component shapes, compute natural frequencies and modes, among various other functions. The platform offers both static and dynamic simulations for Structural Mechanics, accommodating the behavior of materials under elastic and plastic conditions. Additionally, it enables modal and frequency analyses, starting from widely used CAD neutral file formats, ensuring a seamless integration into your design workflow. This comprehensive approach allows for innovative solutions to complex engineering challenges. -
30
Simcenter Femap
Siemens Digital Industries
Simcenter Femap is a sophisticated simulation tool designed for the creation, modification, and analysis of finite element models pertaining to intricate products or systems. This software allows users to implement advanced workflows for modeling individual components, assemblies, or entire systems, enabling them to assess how these models react under realistic conditions. Moreover, Simcenter Femap offers robust data-driven capabilities and graphical visualizations for results interpretation, which, when paired with the top-tier Simcenter Nastran, provides a holistic CAE solution aimed at enhancing product performance. As manufacturers strive to develop lighter yet more robust products, there is a growing emphasis on the utilization of composite materials. Simcenter stands at the forefront of composite analysis, continually advancing its material models and element types to meet industry demands. Furthermore, Simcenter accelerates the simulation process for laminate composite materials by providing an integrated connection to composite design, streamlining workflows for engineers in the field. This integration ultimately fosters innovation and efficiency in product development, paving the way for more sustainable manufacturing practices. -
31
Cadence Clarity 3D Solver
Cadence
The Cadence Clarity 3D Solver is a sophisticated software tool designed for 3D electromagnetic simulation, specifically aimed at creating essential interconnects for printed circuit boards, integrated circuit packages, and systems integrated on chip designs. This powerful tool assists engineers in overcoming intricate electromagnetic issues encountered in the development of systems for advanced technologies such as 5G, automotive applications, high-performance computing, and machine learning, all while ensuring top-tier accuracy. Leveraging Cadence’s state-of-the-art distributed multiprocessing capabilities, the Clarity 3D Solver provides virtually limitless capacity and enhances processing speed by tenfold, making it possible to tackle extensive and complicated structures with ease. Additionally, it generates precise S-parameter models that cater to high-speed signal integrity, power integrity, high-frequency RF/microwave applications, and electromagnetic compliance assessments, ensuring that simulation outcomes align closely with laboratory measurements, even for data transfer rates exceeding 112Gbps. Consequently, this tool stands as a vital asset for engineers looking to push the boundaries of technology in their designs. -
32
CAEplex
Seamplex
$25 per monthSimply launch a standard web browser like Chrome or Firefox and search for "caeplex" to get started. It is compatible with all major operating systems, including Windows, MacOS, GNU/Linux, iOS, and Android. The heavy computations occur on our servers, meaning CAEplex can be utilized on virtually any existing computer, laptop, tablet, or smartphone without the need for hardware upgrades or maintenance. There’s no requirement to purchase a new device or enhance the RAM of your older models. Our standout feature is the combination of "ease and speed," allowing you to solve a CAEplex case from initial input to final results in under a minute with our streamlined three-step process. If you happen to find a faster finite element analysis application, we would love to hear about it. CAEplex is accessible from any mobile device, including older or damaged tablets and phones, ensuring you can access and showcase your projects from anywhere at any time. Embrace an agile development process that incorporates simulation, which we prefer to call "modeling," along with additive manufacturing and seamless online collaboration, enhancing your workflow significantly. This flexibility allows you to stay productive, regardless of your location or device limitations. -
33
COLDFORM
TRANSVALOR
Cold forming tools experience significant mechanical and tribological stresses throughout their operational lifespan, which in some instances can result in premature damage to the tools. Given that these tools constitute a substantial portion of the manufacturing costs for components, it is crucial to proactively address potential issues during the design phase. The COLDFORM® software offers the ability to assess the mechanical strength of dies, thereby enhancing their longevity. It calculates stress distribution within the die, as well as monitoring deformations, wear, temperature variations, and any damage that may occur throughout the process. Furthermore, COLDFORM® can perform quick analyses by applying the stresses derived from the forming process to the tools. Additionally, the software supports coupled part/tool simulations, yielding highly accurate outcomes. With features focused on pre-stressed dies, it allows for precise assessment of the required pre-stressing for the interference fit of the tools. This capability ultimately aids manufacturers in optimizing tool performance and reducing costs associated with tool replacements. -
34
Kombyne
Kombyne
Kombyne™ represents a cutting-edge Software as a Service (SaaS) tool designed for high-performance computing (HPC) workflows, originally tailored for clients in sectors such as defense, automotive, aerospace, and academic research. This platform empowers users to access a diverse array of workflow solutions specifically for HPC computational fluid dynamics (CFD) tasks, encompassing features like on-the-fly extract generation, rendering capabilities, and simulation steering options. Users can benefit from interactive monitoring and control functionalities, all while ensuring minimal disruption to simulations and eliminating reliance on VTK. By employing extract workflows, the necessity for handling large files is significantly reduced, allowing for real-time visualization. The system incorporates an in-transit workflow that utilizes a distinct process to swiftly receive data from the solver code, enabling visualization and analysis without hindering the operation of the running solver. This specialized process, referred to as an endpoint, facilitates the direct output of extracts, cutting planes, or point samples useful for data science, in addition to rendering images. Furthermore, the Endpoint serves as a conduit to widely-used visualization software, enhancing the overall usability and integration of the tool within various workflows. With its versatile features and ease of use, Kombyne™ is set to revolutionize the way HPC tasks are managed and executed across multiple industries. -
35
Energy2D
The Concord Consortium
FreeEnergy2D is an interactive multiphysics simulation program grounded in computational physics, designed to model the three primary modes of heat transfer: conduction, convection, and radiation, while also integrating particle dynamics. This software operates efficiently on a wide range of computers, simplifying the process by removing the need for switches between preprocessors, solvers, and postprocessors that are usually necessary for computational fluid dynamics simulations. Users can create "computational experiments" to explore scientific hypotheses or address engineering challenges without the need for intricate mathematical formulations. Additionally, development is ongoing to introduce various energy transformation types and to enhance support for different fluid types. While Energy2D excels in accurately modeling conduction, its representations of convection and radiation are not entirely precise, which means results involving these elements should be regarded as qualitative. Over 40 scientific papers have utilized Energy2D as a valuable research instrument, showcasing its adoption in the academic community. As the program evolves, its capabilities are expected to expand further, potentially offering more comprehensive insights into complex physical interactions. -
36
GASP
AeroSoft
GASP is a versatile flow solver that handles both structured and unstructured multi-block configurations, effectively addressing the Reynolds Averaged Navier-Stokes (RANS) equations along with the heat conduction equations pertinent to solid structures. It utilizes a hierarchical-tree architecture for its organization, enabling seamless pre- and post-processing within a single interface. Capable of solving both steady and unsteady three-dimensional RANS equations and their various subsets, it employs a multi-block grid topology that accommodates unstructured meshes composed of tetrahedra, hexahedra, prisms, and pyramids. Additionally, it integrates with a portable extensible toolkit designed for scientific computation, which enhances its versatility. The system achieves improved computational efficiency by uncoupling turbulence and chemistry processes. GASP is compatible with a wide array of parallel computing systems, including clusters, and ensures that the integrated domain decomposition remains user-friendly and transparent. Its robust design makes it suitable for a wide range of fluid dynamics applications. -
37
OnScale Solve
OnScale
$4OnScale stands out as the pioneering platform for Cloud Engineering Simulation, merging advanced multiphysics solver technology with the boundless computational capabilities of cloud supercomputers. This innovative solution empowers engineers to execute a vast array of full 3D multiphysics simulations concurrently, enabling the creation of authentic Digital Prototypes that represent the complete operational behavior of intricate high-tech devices. With the aim of delivering an exceptional Cloud Engineering Simulation experience, OnScale Solve is designed to be intuitive, robust, and effective. It operates seamlessly on both public and private cloud supercomputers and features a user-friendly web interface, an API for smooth integration into existing design processes, customizable scripting options for tailored engineering simulations, and plugins that expand its modeling functionalities. Furthermore, OnScale Solve equips engineers with the capability to synthetically generate data crucial for training advanced AI/ML algorithms, thereby enhancing innovation in technology development. This comprehensive platform ensures that engineers have the tools they need to push the boundaries of simulation and design. -
38
ESS has gained significant traction in the automotive sector due to our specialized solutions tailored for this niche market. As our offerings thrived in a highly competitive landscape, ESS expanded into the “on-demand” sector. With the introduction of the alsim cloud, we are accomplishing unprecedented feats in the realm of simulation technology. Our pay-per-use simulation tools are accessible to all users, regardless of their CFD background, allowing students, engineers, and businesses to leverage our advanced techniques to enhance their projects. In addition to our offline products, we cater to diverse industries by providing solutions and detailed reports derived from our simulation outputs. We engage in close collaboration with our clients to understand their specific needs and challenges, ensuring they receive precise simulation results tailored to their requirements. Drawing from our extensive experience with industrial processes and our powerful solvers, we have successfully supported several leading OEMs around the globe. This dedication to customer satisfaction and innovation continues to drive our growth and influence in the industry.
-
39
REM3D
TRANSVALOR
Utilizing a local density map, REM3D® delivers dependable predictions regarding the resistance of components along with their insulating, noise, and comfort characteristics. By simulating a ‘dual foam’ pouring process, one can observe the transitional areas between foams with varying rigidities. Incorporating "mold tilting" into the simulation replicates realistic process conditions, ensuring they are as accurate as possible. The inclusion of features like automatic mold tilting and the influence of gravity on melt flow enables an analysis of genuine process conditions, thereby ensuring uniformity in your components. Additionally, investigating the placement of injectors minimizes the occurrence of defects. Consequently, you gain trustworthy forecasts related to not only the durability of your components but also their insulating and comfort attributes. For fiber-reinforced plastics, REM3D® also assesses the orientation of the fibers throughout the filling phase and after the cooling process has completed. This comprehensive analysis enhances the overall quality of the final products. -
40
Fieldscale
Fieldscale
A remarkable 36% reduction in power consumption for the final product has been achieved through an enhanced sensor design. This advancement accelerates research and development initiatives by allowing the simultaneous testing of numerous sensor components and design iterations. Additionally, the capability to detect design flaws within hours rather than weeks significantly shortens the product's time-to-market. The sophisticated algorithms are seamlessly integrated into a user-friendly interface, facilitating the effortless creation of exceptional touchscreen devices. Fieldscale's solvers push the limits of electrical simulation, enabling intricate analyses that were previously unattainable. Users can conduct thousands, or even millions, of analyses in various scenarios and receive results on the same day. Ultimately, Fieldscale empowers you to achieve optimal designs more efficiently and swiftly than your competitors, setting a new standard in product development. This level of innovation and efficiency can reshape entire industries, transforming the way companies approach design and production. -
41
OPTIMICA Compiler Toolkit
MODELON
Modelon’s OPTIMICA Compiler Toolkit stands out as the market's leading Modelica-based mathematical engine, providing users with a robust solution for automating, simulating, and optimizing system behaviors across the model-based design cycle. As the trusted compiler for Modelon Impact, OPTIMICA allows users to construct multi-domain physical systems by selecting from a vast library of model components. The toolkit’s cutting-edge solvers facilitate the evaluation of intricate physical systems, accommodating both transient simulations and steady-state calculations, as well as dynamic optimization. With its advanced mathematical capabilities, OPTIMICA can effectively manipulate and streamline models to enhance performance and reliability, catering to diverse industries and applications that range from automotive and active safety to energy and power generation optimization. Given the growing demand for effective power regulation in the contemporary energy landscape, optimizing the startup processes of thermal power plants has become a critical industrial requirement. Furthermore, the flexibility and efficiency of OPTIMICA make it an invaluable asset for engineers tackling complex system challenges. -
42
Tecplot 360
Tecplot
Enhance your decision-making process with Tecplot 360, the ultimate CFD post-processing tool. As more CFD simulations are conducted and grid sizes expand, the necessity for effective handling of large data sets and automated workflows becomes increasingly important. With Tecplot 360, you can reduce idle time and focus on discovering new insights. The software allows for seamless integration of XY, 2D, and 3D plots, giving you the flexibility to design visuals according to your specifications. Present your findings through stunning images and dynamic animations to captivate your audience. Simplify repetitive tasks using PyTecplot Python scripting to enhance productivity. Ensure that you never overlook important results while analyzing parametric data with the powerful Chorus tool. Access vast remote data securely through the SZL-Server client-server connection. Tecplot 360 supports a wide array of data formats including Tecplot, FLUENT, Plot3D, CGNS, OpenFOAM, FVCOM, VTU, and over 22 others related to CFD, FEA, and structural analysis. Additionally, you can efficiently report and compare multiple solutions in a multi-frame setup with various pages, allowing for comprehensive analysis and presentation. The software's versatility makes it an indispensable asset for any data-driven professional. -
43
CAE Fidesys
CAE Fidesys
A robust and adaptable preprocessor designed for generating high-quality finite element meshes at an appealing cost that is significantly lower than international alternatives. It offers strength assessments for both static and dynamic loads, as well as the ability to determine natural frequencies and vibration modes. Users can also analyze critical loads and buckling modes effectively. The software supports both 2D and 3D computations for various structures, including volumetric, thin-walled, and bar configurations. It incorporates elastoplastic deformation analysis based on the Mises and Drucker-Prager models, alongside strength evaluations for large displacements. Additionally, it calculates thermal conditions, heat loss, and temperature-induced deformations in parts and structures, while also providing strength assessments for materials with high elasticity. This comprehensive approach ensures that engineers can conduct thorough analyses across a wide range of applications. -
44
Ansys Cloud Direct
Ansys
Ansys Cloud Direct’s powerful, easy-to-access HPC cloud solution will change the way you think about simulation. Unlike other simulation cloud solutions, Ansys Cloud Direct is simple to set up and navigate, will not break your workflow and does not require cloud experts to operate. Ansys Cloud Direct is all about Workflow, Performance, Support. -
45
Ansys HFSS
Ansys
Ansys HFSS is a versatile 3D electromagnetic (EM) simulation tool used for the design and analysis of high-frequency electronic devices such as antennas, interconnects, connectors, integrated circuits (ICs), and printed circuit boards (PCBs). This powerful software allows engineers to create and evaluate a wide range of high-frequency electronic products, including antenna arrays, RF and microwave components, and filters. Renowned among engineers globally, Ansys HFSS is essential for developing high-speed electronics utilized in various applications like communication systems, advanced driver assistance systems (ADAS), satellites, and Internet of Things (IoT) devices. The software's exceptional performance and precision empower engineers to tackle complex challenges related to RF, microwave, IC, PCB, and electromagnetic interference (EMI) issues. With a robust suite of solvers, Ansys HFSS effectively addresses a myriad of electromagnetic challenges, making it an indispensable resource in the field of electronic design. As technology progresses, the relevance of such simulation tools becomes increasingly critical in ensuring optimal performance in modern electronic systems.