Best Teuken 7B Alternatives in 2025
Find the top alternatives to Teuken 7B currently available. Compare ratings, reviews, pricing, and features of Teuken 7B alternatives in 2025. Slashdot lists the best Teuken 7B alternatives on the market that offer competing products that are similar to Teuken 7B. Sort through Teuken 7B alternatives below to make the best choice for your needs
-
1
Falcon-40B
Technology Innovation Institute (TII)
FreeFalcon-40B is a causal decoder-only model consisting of 40 billion parameters, developed by TII and trained on 1 trillion tokens from RefinedWeb, supplemented with carefully selected datasets. It is distributed under the Apache 2.0 license. Why should you consider using Falcon-40B? This model stands out as the leading open-source option available, surpassing competitors like LLaMA, StableLM, RedPajama, and MPT, as evidenced by its ranking on the OpenLLM Leaderboard. Its design is specifically tailored for efficient inference, incorporating features such as FlashAttention and multiquery capabilities. Moreover, it is offered under a flexible Apache 2.0 license, permitting commercial applications without incurring royalties or facing restrictions. It's important to note that this is a raw, pretrained model and is generally recommended to be fine-tuned for optimal performance in most applications. If you need a version that is more adept at handling general instructions in a conversational format, you might want to explore Falcon-40B-Instruct as a potential alternative. -
2
OpenEuroLLM
OpenEuroLLM
OpenEuroLLM represents a collaborative effort between prominent AI firms and research organizations across Europe, aimed at creating a suite of open-source foundational models to promote transparency in artificial intelligence within the continent. This initiative prioritizes openness by making data, documentation, training and testing code, and evaluation metrics readily available, thereby encouraging community participation. It is designed to comply with European Union regulations, with the goal of delivering efficient large language models that meet the specific standards of Europe. A significant aspect of the project is its commitment to linguistic and cultural diversity, ensuring that multilingual capabilities cover all official EU languages and potentially more. The initiative aspires to broaden access to foundational models that can be fine-tuned for a range of applications, enhance evaluation outcomes across different languages, and boost the availability of training datasets and benchmarks for researchers and developers alike. By sharing tools, methodologies, and intermediate results, transparency is upheld during the entire training process, fostering trust and collaboration within the AI community. Ultimately, OpenEuroLLM aims to pave the way for more inclusive and adaptable AI solutions that reflect the rich diversity of European languages and cultures. -
3
Baichuan-13B
Baichuan Intelligent Technology
FreeBaichuan-13B is an advanced large-scale language model developed by Baichuan Intelligent, featuring 13 billion parameters and available for open-source and commercial use, building upon its predecessor Baichuan-7B. This model has set new records for performance among similarly sized models on esteemed Chinese and English evaluation metrics. The release includes two distinct pre-training variations: Baichuan-13B-Base and Baichuan-13B-Chat. By significantly increasing the parameter count to 13 billion, Baichuan-13B enhances its capabilities, training on 1.4 trillion tokens from a high-quality dataset, which surpasses LLaMA-13B's training data by 40%. It currently holds the distinction of being the model with the most extensive training data in the 13B category, providing robust support for both Chinese and English languages, utilizing ALiBi positional encoding, and accommodating a context window of 4096 tokens for improved comprehension and generation. This makes it a powerful tool for a variety of applications in natural language processing. -
4
OLMo 2
Ai2
OLMo 2 represents a collection of completely open language models created by the Allen Institute for AI (AI2), aimed at giving researchers and developers clear access to training datasets, open-source code, reproducible training methodologies, and thorough assessments. These models are trained on an impressive volume of up to 5 trillion tokens and compete effectively with top open-weight models like Llama 3.1, particularly in English academic evaluations. A key focus of OLMo 2 is on ensuring training stability, employing strategies to mitigate loss spikes during extended training periods, and applying staged training interventions in the later stages of pretraining to mitigate weaknesses in capabilities. Additionally, the models leverage cutting-edge post-training techniques derived from AI2's Tülu 3, leading to the development of OLMo 2-Instruct models. To facilitate ongoing enhancements throughout the development process, an actionable evaluation framework known as the Open Language Modeling Evaluation System (OLMES) was created, which includes 20 benchmarks that evaluate essential capabilities. This comprehensive approach not only fosters transparency but also encourages continuous improvement in language model performance. -
5
Qwen2.5-1M
Alibaba
FreeQwen2.5-1M, an open-source language model from the Qwen team, has been meticulously crafted to manage context lengths reaching as high as one million tokens. This version introduces two distinct model variants, namely Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, representing a significant advancement as it is the first instance of Qwen models being enhanced to accommodate such large context lengths. In addition to this, the team has released an inference framework that is based on vLLM and incorporates sparse attention mechanisms, which greatly enhance the processing speed for 1M-token inputs, achieving improvements between three to seven times. A detailed technical report accompanies this release, providing in-depth insights into the design choices and the results from various ablation studies. This transparency allows users to fully understand the capabilities and underlying technology of the models. -
6
Qwen LLM represents a collection of advanced large language models created by Alibaba Cloud's Damo Academy. These models leverage an extensive dataset comprising text and code, enabling them to produce human-like text, facilitate language translation, craft various forms of creative content, and provide informative answers to queries. Key attributes of Qwen LLMs include: A range of sizes: The Qwen series features models with parameters varying from 1.8 billion to 72 billion, catering to diverse performance requirements and applications. Open source availability: Certain versions of Qwen are open-source, allowing users to access and modify the underlying code as needed. Multilingual capabilities: Qwen is equipped to comprehend and translate several languages, including English, Chinese, and French. Versatile functionalities: In addition to language generation and translation, Qwen models excel in tasks such as answering questions, summarizing texts, and generating code, making them highly adaptable tools for various applications. Overall, the Qwen LLM family stands out for its extensive capabilities and flexibility in meeting user needs.
-
7
Mistral NeMo
Mistral AI
FreeIntroducing Mistral NeMo, our latest and most advanced small model yet, featuring a cutting-edge 12 billion parameters and an expansive context length of 128,000 tokens, all released under the Apache 2.0 license. Developed in partnership with NVIDIA, Mistral NeMo excels in reasoning, world knowledge, and coding proficiency within its category. Its architecture adheres to industry standards, making it user-friendly and a seamless alternative for systems currently utilizing Mistral 7B. To facilitate widespread adoption among researchers and businesses, we have made available both pre-trained base and instruction-tuned checkpoints under the same Apache license. Notably, Mistral NeMo incorporates quantization awareness, allowing for FP8 inference without compromising performance. The model is also tailored for diverse global applications, adept in function calling and boasting a substantial context window. When compared to Mistral 7B, Mistral NeMo significantly outperforms in understanding and executing detailed instructions, showcasing enhanced reasoning skills and the ability to manage complex multi-turn conversations. Moreover, its design positions it as a strong contender for multi-lingual tasks, ensuring versatility across various use cases. -
8
CodeGemma
Google
CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere. -
9
DeepSeek-V2
DeepSeek
FreeDeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence. -
10
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
11
MPT-7B
MosaicML
FreeWe are excited to present MPT-7B, the newest addition to the MosaicML Foundation Series. This transformer model has been meticulously trained from the ground up using 1 trillion tokens of diverse text and code. It is open-source and ready for commercial applications, delivering performance on par with LLaMA-7B. The training process took 9.5 days on the MosaicML platform, requiring no human input and incurring an approximate cost of $200,000. With MPT-7B, you can now train, fine-tune, and launch your own customized MPT models, whether you choose to begin with one of our provided checkpoints or start anew. To provide additional options, we are also introducing three fine-tuned variants alongside the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the latter boasting an impressive context length of 65,000 tokens, allowing for extensive content generation. These advancements open up new possibilities for developers and researchers looking to leverage the power of transformer models in their projects. -
12
Codestral
Mistral AI
FreeWe are excited to unveil Codestral, our inaugural code generation model. This open-weight generative AI system is specifically crafted for tasks related to code generation, enabling developers to seamlessly write and engage with code via a unified instruction and completion API endpoint. As it becomes proficient in both programming languages and English, Codestral is poised to facilitate the creation of sophisticated AI applications tailored for software developers. With a training foundation that encompasses a wide array of over 80 programming languages—ranging from widely-used options like Python, Java, C, C++, JavaScript, and Bash to more niche languages such as Swift and Fortran—Codestral ensures a versatile support system for developers tackling various coding challenges and projects. Its extensive language capabilities empower developers to confidently navigate different coding environments, making Codestral an invaluable asset in the programming landscape. -
13
OpenGPT-X
OpenGPT-X
FreeOpenGPT-X is an initiative based in Germany that is dedicated to creating large AI language models specifically designed to meet the needs of Europe, highlighting attributes such as adaptability, reliability, multilingual support, and open-source accessibility. This initiative unites various partners to encompass the full spectrum of the generative AI value chain, which includes scalable, GPU-powered infrastructure and data for training expansive language models, alongside model design and practical applications through prototypes and proofs of concept. The primary goal of OpenGPT-X is to promote innovative research with a significant emphasis on business applications, thus facilitating the quicker integration of generative AI within the German economic landscape. Additionally, the project places a strong importance on the ethical development of AI, ensuring that the models developed are both reliable and consistent with European values and regulations. Furthermore, OpenGPT-X offers valuable resources such as the LLM Workbook and a comprehensive three-part reference guide filled with examples and resources to aid users in grasping the essential features of large AI language models, ultimately fostering a deeper understanding of this technology. By providing these tools, OpenGPT-X not only supports the technical development of AI but also encourages responsible usage and implementation across various sectors. -
14
InstructGPT
OpenAI
$0.0200 per 1000 tokensInstructGPT is a publicly available framework that enables the training of language models capable of producing natural language instructions based on visual stimuli. By leveraging a generative pre-trained transformer (GPT) model alongside the advanced object detection capabilities of Mask R-CNN, it identifies objects within images and formulates coherent natural language descriptions. This framework is tailored for versatility across various sectors, including robotics, gaming, and education; for instance, it can guide robots in executing intricate tasks through spoken commands or support students by offering detailed narratives of events or procedures. Furthermore, InstructGPT's adaptability allows it to bridge the gap between visual understanding and linguistic expression, enhancing interaction in numerous applications. -
15
CodeQwen
Alibaba
FreeCodeQwen serves as the coding counterpart to Qwen, which is a series of large language models created by the Qwen team at Alibaba Cloud. Built on a transformer architecture that functions solely as a decoder, this model has undergone extensive pre-training using a vast dataset of code. It showcases robust code generation abilities and demonstrates impressive results across various benchmarking tests. With the capacity to comprehend and generate long contexts of up to 64,000 tokens, CodeQwen accommodates 92 programming languages and excels in tasks such as text-to-SQL queries and debugging. Engaging with CodeQwen is straightforward—you can initiate a conversation with just a few lines of code utilizing transformers. The foundation of this interaction relies on constructing the tokenizer and model using pre-existing methods, employing the generate function to facilitate dialogue guided by the chat template provided by the tokenizer. In alignment with our established practices, we implement the ChatML template tailored for chat models. This model adeptly completes code snippets based on the prompts it receives, delivering responses without the need for any further formatting adjustments, thereby enhancing the user experience. The seamless integration of these elements underscores the efficiency and versatility of CodeQwen in handling diverse coding tasks. -
16
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
17
Mistral 7B
Mistral AI
FreeMistral 7B is a language model with 7.3 billion parameters that demonstrates superior performance compared to larger models such as Llama 2 13B on a variety of benchmarks. It utilizes innovative techniques like Grouped-Query Attention (GQA) for improved inference speed and Sliding Window Attention (SWA) to manage lengthy sequences efficiently. Released under the Apache 2.0 license, Mistral 7B is readily available for deployment on different platforms, including both local setups and prominent cloud services. Furthermore, a specialized variant known as Mistral 7B Instruct has shown remarkable capabilities in following instructions, outperforming competitors like Llama 2 13B Chat in specific tasks. This versatility makes Mistral 7B an attractive option for developers and researchers alike. -
18
Yi-Large
01.AI
$0.19 per 1M input tokenYi-Large is an innovative proprietary large language model created by 01.AI, featuring an impressive context length of 32k and a cost structure of $2 for each million tokens for both inputs and outputs. Renowned for its superior natural language processing abilities, common-sense reasoning, and support for multiple languages, it competes effectively with top models such as GPT-4 and Claude3 across various evaluations. This model is particularly adept at handling tasks that involve intricate inference, accurate prediction, and comprehensive language comprehension, making it ideal for applications such as knowledge retrieval, data categorization, and the development of conversational chatbots that mimic human interaction. Built on a decoder-only transformer architecture, Yi-Large incorporates advanced features like pre-normalization and Group Query Attention, and it has been trained on an extensive, high-quality multilingual dataset to enhance its performance. The model's flexibility and economical pricing position it as a formidable player in the artificial intelligence landscape, especially for businesses looking to implement AI technologies on a global scale. Additionally, its ability to adapt to a wide range of use cases underscores its potential to revolutionize how organizations leverage language models for various needs. -
19
Qwen-7B
Alibaba
FreeQwen-7B is the 7-billion parameter iteration of Alibaba Cloud's Qwen language model series, also known as Tongyi Qianwen. This large language model utilizes a Transformer architecture and has been pretrained on an extensive dataset comprising web texts, books, code, and more. Furthermore, we introduced Qwen-7B-Chat, an AI assistant that builds upon the pretrained Qwen-7B model and incorporates advanced alignment techniques. The Qwen-7B series boasts several notable features: It has been trained on a premium dataset, with over 2.2 trillion tokens sourced from a self-assembled collection of high-quality texts and codes across various domains, encompassing both general and specialized knowledge. Additionally, our model demonstrates exceptional performance, surpassing competitors of similar size on numerous benchmark datasets that assess capabilities in natural language understanding, mathematics, and coding tasks. This positions Qwen-7B as a leading choice in the realm of AI language models. Overall, its sophisticated training and robust design contribute to its impressive versatility and effectiveness. -
20
GPT-J
EleutherAI
FreeGPT-J represents an advanced language model developed by EleutherAI, known for its impressive capabilities. When it comes to performance, GPT-J showcases a proficiency that rivals OpenAI's well-known GPT-3 in various zero-shot tasks. Remarkably, it has even outperformed GPT-3 in specific areas, such as code generation. The most recent version of this model, called GPT-J-6B, is constructed using a comprehensive linguistic dataset known as The Pile, which is publicly accessible and consists of an extensive 825 gibibytes of language data divided into 22 unique subsets. Although GPT-J possesses similarities to ChatGPT, it's crucial to highlight that it is primarily intended for text prediction rather than functioning as a chatbot. In a notable advancement in March 2023, Databricks unveiled Dolly, a model that is capable of following instructions and operates under an Apache license, further enriching the landscape of language models. This evolution in AI technology continues to push the boundaries of what is possible in natural language processing. -
21
Qwen3
Alibaba
FreeQwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications. -
22
Mistral Large
Mistral AI
FreeMistral Large stands as the premier language model from Mistral AI, engineered for sophisticated text generation and intricate multilingual reasoning tasks such as text comprehension, transformation, and programming code development. This model encompasses support for languages like English, French, Spanish, German, and Italian, which allows it to grasp grammar intricacies and cultural nuances effectively. With an impressive context window of 32,000 tokens, Mistral Large can retain and reference information from lengthy documents with accuracy. Its abilities in precise instruction adherence and native function-calling enhance the development of applications and the modernization of tech stacks. Available on Mistral's platform, Azure AI Studio, and Azure Machine Learning, it also offers the option for self-deployment, catering to sensitive use cases. Benchmarks reveal that Mistral Large performs exceptionally well, securing its position as the second-best model globally that is accessible via an API, just behind GPT-4, illustrating its competitive edge in the AI landscape. Such capabilities make it an invaluable tool for developers seeking to leverage advanced AI technology. -
23
Llama 3.1
Meta
FreeIntroducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective. -
24
LongLLaMA
LongLLaMA
FreeThis repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing. -
25
mT5
Google
FreeThe multilingual T5 (mT5) is a highly versatile pretrained text-to-text transformer model, developed using a methodology akin to that of T5. This repository serves as a resource for replicating the findings outlined in the mT5 research paper. mT5 has been trained on the extensive mC4 corpus, which encompasses 101 different languages, including but not limited to Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, and many others. This impressive range of languages makes mT5 a valuable tool for multilingual applications across various fields. -
26
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
27
Yi-Lightning
Yi-Lightning
Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field. -
28
Llama 3.2
Meta
FreeThe latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains. -
29
Llama 3.3
Meta
FreeThe newest version in the Llama series, Llama 3.3, represents a significant advancement in language models aimed at enhancing AI's capabilities in understanding and communication. It boasts improved contextual reasoning, superior language generation, and advanced fine-tuning features aimed at producing exceptionally accurate, human-like responses across a variety of uses. This iteration incorporates a more extensive training dataset, refined algorithms for deeper comprehension, and mitigated biases compared to earlier versions. Llama 3.3 stands out in applications including natural language understanding, creative writing, technical explanations, and multilingual interactions, making it a crucial asset for businesses, developers, and researchers alike. Additionally, its modular architecture facilitates customizable deployment in specific fields, ensuring it remains versatile and high-performing even in large-scale applications. With these enhancements, Llama 3.3 is poised to redefine the standards of AI language models. -
30
Mistral Small 3.1
Mistral
FreeMistral Small 3.1 represents a cutting-edge, multimodal, and multilingual AI model that has been released under the Apache 2.0 license. This upgraded version builds on Mistral Small 3, featuring enhanced text capabilities and superior multimodal comprehension, while also accommodating an extended context window of up to 128,000 tokens. It demonstrates superior performance compared to similar models such as Gemma 3 and GPT-4o Mini, achieving impressive inference speeds of 150 tokens per second. Tailored for adaptability, Mistral Small 3.1 shines in a variety of applications, including instruction following, conversational support, image analysis, and function execution, making it ideal for both business and consumer AI needs. The model's streamlined architecture enables it to operate efficiently on hardware such as a single RTX 4090 or a Mac equipped with 32GB of RAM, thus supporting on-device implementations. Users can download it from Hugging Face and access it through Mistral AI's developer playground, while it is also integrated into platforms like Google Cloud Vertex AI, with additional accessibility on NVIDIA NIM and more. This flexibility ensures that developers can leverage its capabilities across diverse environments and applications. -
31
StarCoder
BigCode
FreeStarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks. -
32
Falcon 3
Technology Innovation Institute (TII)
FreeFalcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available. -
33
Samsung Gauss
Samsung
Samsung Gauss is an innovative AI model crafted by Samsung Electronics, designed to serve as a large language model that has been trained on an extensive array of text and code. This advanced model is capable of producing coherent text, translating various languages, creating diverse forms of artistic content, and providing informative answers to a wide range of inquiries. Although Samsung Gauss is still being refined, it has already demonstrated proficiency in a variety of tasks, such as: Following directives and fulfilling requests with careful consideration. Offering thorough and insightful responses to questions, regardless of their complexity or peculiarity. Crafting different types of creative outputs, which include poems, programming code, scripts, musical compositions, emails, and letters. To illustrate its capabilities, Samsung Gauss can translate text among numerous languages, including English, French, German, Spanish, Chinese, Japanese, and Korean, while also generating functional code tailored to specific programming needs. Ultimately, as development continues, the potential applications of Samsung Gauss are bound to expand even further. -
34
Qwen2-VL
Alibaba
FreeQwen2-VL represents the most advanced iteration of vision-language models within the Qwen family, building upon the foundation established by Qwen-VL. This enhanced model showcases remarkable capabilities, including: Achieving cutting-edge performance in interpreting images of diverse resolutions and aspect ratios, with Qwen2-VL excelling in visual comprehension tasks such as MathVista, DocVQA, RealWorldQA, and MTVQA, among others. Processing videos exceeding 20 minutes in length, enabling high-quality video question answering, engaging dialogues, and content creation. Functioning as an intelligent agent capable of managing devices like smartphones and robots, Qwen2-VL utilizes its sophisticated reasoning and decision-making skills to perform automated tasks based on visual cues and textual commands. Providing multilingual support to accommodate a global audience, Qwen2-VL can now interpret text in multiple languages found within images, extending its usability and accessibility to users from various linguistic backgrounds. This wide-ranging capability positions Qwen2-VL as a versatile tool for numerous applications across different fields. -
35
Arcee-SuperNova
Arcee.ai
FreeOur latest flagship offering is a compact Language Model (SLM) that harnesses the capabilities and efficiency of top-tier closed-source LLMs. It excels in a variety of generalized tasks, adapts well to instructions, and aligns with human preferences. With its impressive 70B parameters, it stands out as the leading model available. SuperNova serves as a versatile tool for a wide range of generalized applications, comparable to OpenAI’s GPT-4o, Claude Sonnet 3.5, and Cohere. Utilizing cutting-edge learning and optimization methods, SuperNova produces remarkably precise responses that mimic human conversation. It is recognized as the most adaptable, secure, and budget-friendly language model in the industry, allowing clients to reduce total deployment expenses by as much as 95% compared to traditional closed-source alternatives. SuperNova can be seamlessly integrated into applications and products, used for general chat interactions, and tailored to various scenarios. Additionally, by consistently updating your models with the latest open-source advancements, you can avoid being tied to a single solution. Safeguarding your information is paramount, thanks to our top-tier privacy protocols. Ultimately, SuperNova represents a significant advancement in making powerful AI tools accessible for diverse needs. -
36
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
37
fullmoon
fullmoon
FreeFullmoon is an innovative, open-source application designed to allow users to engage directly with large language models on their personal devices, prioritizing privacy and enabling offline use. Tailored specifically for Apple silicon, it functions smoothly across various platforms, including iOS, iPadOS, macOS, and visionOS. Users have the ability to customize their experience by modifying themes, fonts, and system prompts, while the app also works seamlessly with Apple's Shortcuts to enhance user productivity. Notably, Fullmoon is compatible with models such as Llama-3.2-1B-Instruct-4bit and Llama-3.2-3B-Instruct-4bit, allowing for effective AI interactions without requiring internet connectivity. This makes it a versatile tool for anyone looking to harness the power of AI conveniently and privately. -
38
DeepSeek-V3.1-Terminus
DeepSeek
FreeDeepSeek has launched DeepSeek-V3.1-Terminus, an upgrade to the V3.1 architecture that integrates user suggestions to enhance output stability, consistency, and overall agent performance. This new version significantly decreases the occurrences of mixed Chinese and English characters as well as unintended distortions, leading to a cleaner and more uniform language generation experience. Additionally, the update revamps both the code agent and search agent subsystems to deliver improved and more dependable performance across various benchmarks. DeepSeek-V3.1-Terminus is available as an open-source model, with its weights accessible on Hugging Face, making it easier for the community to leverage its capabilities. The structure of the model remains consistent with DeepSeek-V3, ensuring it is compatible with existing deployment strategies, and updated inference demonstrations are provided for users to explore. Notably, the model operates at a substantial scale of 685B parameters and supports multiple tensor formats, including FP8, BF16, and F32, providing adaptability in different environments. This flexibility allows developers to choose the most suitable format based on their specific needs and resource constraints. -
39
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
40
GPT-4o, with the "o" denoting "omni," represents a significant advancement in the realm of human-computer interaction by accommodating various input types such as text, audio, images, and video, while also producing outputs across these same formats. Its capability to process audio inputs allows for responses in as little as 232 milliseconds, averaging 320 milliseconds, which closely resembles the response times seen in human conversations. In terms of performance, it maintains the efficiency of GPT-4 Turbo for English text and coding while showing marked enhancements in handling text in other languages, all while operating at a much faster pace and at a cost that is 50% lower via the API. Furthermore, GPT-4o excels in its ability to comprehend vision and audio, surpassing the capabilities of its predecessors, making it a powerful tool for multi-modal interactions. This innovative model not only streamlines communication but also broadens the possibilities for applications in diverse fields.
-
41
Mistral Large 2
Mistral AI
FreeMistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities. -
42
Aya
Cohere AI
Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape. -
43
LLaVA
LLaVA
FreeLLaVA, or Large Language-and-Vision Assistant, represents a groundbreaking multimodal model that combines a vision encoder with the Vicuna language model, enabling enhanced understanding of both visual and textual information. By employing end-to-end training, LLaVA showcases remarkable conversational abilities, mirroring the multimodal features found in models such as GPT-4. Significantly, LLaVA-1.5 has reached cutting-edge performance on 11 different benchmarks, leveraging publicly accessible data and achieving completion of its training in about one day on a single 8-A100 node, outperforming approaches that depend on massive datasets. The model's development included the construction of a multimodal instruction-following dataset, which was produced using a language-only variant of GPT-4. This dataset consists of 158,000 distinct language-image instruction-following examples, featuring dialogues, intricate descriptions, and advanced reasoning challenges. Such a comprehensive dataset has played a crucial role in equipping LLaVA to handle a diverse range of tasks related to vision and language with great efficiency. In essence, LLaVA not only enhances the interaction between visual and textual modalities but also sets a new benchmark in the field of multimodal AI. -
44
ALBERT
Google
ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks. -
45
Giga ML
Giga ML
We are excited to announce the launch of our X1 large series of models. The most robust model from Giga ML is now accessible for both pre-training and fine-tuning in an on-premises environment. Thanks to our compatibility with Open AI, existing integrations with tools like long chain, llama-index, and others function effortlessly. You can also proceed with pre-training LLMs using specialized data sources such as industry-specific documents or company files. The landscape of large language models (LLMs) is rapidly evolving, creating incredible opportunities for advancements in natural language processing across multiple fields. Despite this growth, several significant challenges persist in the industry. At Giga ML, we are thrilled to introduce the X1 Large 32k model, an innovative on-premise LLM solution designed specifically to tackle these pressing challenges, ensuring that organizations can harness the full potential of LLMs effectively. With this launch, we aim to empower businesses to elevate their language processing capabilities.