ManageEngine OpManager
OpManager is the ideal end-to-end network monitoring tool for your organization's network. With OpManager, you can keep a close eye on health, performance, and availability levels of all network devices. This includes monitoring switches, routers, LANs, WLCs, IP addresses and firewalls.
Insights into your hardware health and performance; monitor CPU, memory, temperature, disk usage, and more to improve efficiency.
Seamlessly manage faults and alerts with instant notifications and detailed logs.
Streamlined workflows facilitate easy set-up to execute quick diagnosis and corrective measures.
The solution also comes with powerful visualization tools such as business views, 3d data center views, topology maps, heat maps, and customizable dashboards.
Get proactive in capacity planning and decision-making with over 250 predefined reports covering all important metrics and areas in your network.
Overall, OpManager's detailed management capabilities make it the ideal solution for IT administrators to achieve network resiliency and efficiency.
Learn more
Bitrise
Streamline your development process while saving time, reducing costs, and alleviating developer stress with a mobile CI/CD solution that is not only swift and adaptable but also scalable. Whether your preference leans towards native development or cross-platform frameworks, we have a comprehensive solution that meets your needs. Supporting languages such as Swift, Objective-C, Java, and Kotlin, along with platforms like Xamarin, Cordova, Ionic, React Native, and Flutter, we ensure that your initial workflows are configured automatically so you can start building within minutes. Bitrise seamlessly integrates with any Git service, whether public, private, or ad hoc, including platforms like GitHub, GitHub Enterprise, GitLab, GitLab Enterprise, and Bitbucket, available both in the cloud and on-premises. You can easily trigger builds based on pull requests, schedule them for specific times, or set up custom webhooks to suit your workflow. Additionally, our workflows are designed to operate on your terms, enabling you to coordinate various tasks such as performing integration tests, deploying to device farms, and distributing apps to testers or app stores, ultimately enhancing your overall efficiency. With a flexible approach, you can adapt your CI/CD processes to meet the evolving demands of your development cycle.
Learn more
Boofuzz
Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.
Learn more
LibFuzzer
LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.
Learn more