Best Darwin Alternatives in 2025
Find the top alternatives to Darwin currently available. Compare ratings, reviews, pricing, and features of Darwin alternatives in 2025. Slashdot lists the best Darwin alternatives on the market that offer competing products that are similar to Darwin. Sort through Darwin alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
677 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
Qloo
Qloo
23 RatingsQloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata. -
4
Fraud.net
Fraud.net, Inc.
56 RatingsDon't let fraud erode your bottom line, damage your reputation, or stall your growth. FraudNet's AI-driven platform empowers enterprises to stay ahead of threats, streamline compliance, and manage risk at scale—all in real-time. While fraudsters evolve tactics, our platform detects tomorrow's threats, delivering risk assessments through insights from billions of analyzed transactions. Imagine transforming your fraud prevention with a single, robust platform: comprehensive screening for smoother onboarding and reduced risk exposure, continuous monitoring to proactively identify and block new threats, and precision fraud detection across channels and payment types with real-time, AI-powered risk scoring. Our proprietary machine learning models continuously learn and improve, identifying patterns invisible to traditional systems. Paired with our Data Hub of dozens of third-party data integrations, you'll gain unprecedented fraud and risk protection while slashing false positives and eliminating operational inefficiencies. The impact is undeniable. Leading payment companies, financial institutions, innovative fintechs, and commerce brands trust our AI-powered solutions worldwide, and they're seeing dramatic results: 80% reduction in fraud losses and 97% fewer false positives. With our flexible no-code/low-code architecture, you can scale effortlessly as you grow. Why settle for outdated fraud and risk management systems when you could be building resilience for future opportunities? See the Fraud.Net difference for yourself. Request your personalized demo today and discover how we can help you strengthen your business against threats while empowering growth. -
5
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
6
Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
-
7
Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
-
8
Domino Enterprise MLOps Platform
Domino Data Lab
1 RatingThe Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
9
Alteryx
Alteryx
Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world. -
10
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
11
H2O.ai
H2O.ai
H2O.ai stands at the forefront of open source AI and machine learning, dedicated to making artificial intelligence accessible to all. Our cutting-edge platforms, which are designed for enterprise readiness, support hundreds of thousands of data scientists across more than 20,000 organizations worldwide. By enabling companies in sectors such as finance, insurance, healthcare, telecommunications, retail, pharmaceuticals, and marketing, we are helping to foster a new wave of businesses that harness the power of AI to drive tangible value and innovation in today's marketplace. With our commitment to democratizing technology, we aim to transform how industries operate and thrive. -
12
Metacoder
Wazoo Mobile Technologies LLC
$89 per user/month Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data. -
13
Analance
Ducen
Analance is a comprehensive and scalable solution that integrates Data Science, Advanced Analytics, Business Intelligence, and Data Management into one seamless, self-service platform. Designed to empower users with essential analytical capabilities, it ensures that data insights are readily available to all, maintains consistent performance as user demands expand, and meets ongoing business goals within a singular framework. Analance is dedicated to transforming high-quality data into precise predictions, providing both seasoned data scientists and novice users with intuitive, point-and-click pre-built algorithms alongside a flexible environment for custom coding. By bridging the gap between advanced analytics and user accessibility, Analance facilitates informed decision-making across organizations. Company – Overview Ducen IT supports Business and IT professionals in Fortune 1000 companies by offering advanced analytics, business intelligence, and data management through its distinctive, all-encompassing data science platform known as Analance. -
14
Oracle Data Science
Oracle
A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making. -
15
Saturn Cloud
Saturn Cloud
$0.005 per GB per hour 98 RatingsSaturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack. -
16
Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
-
17
DATAGYM
eForce21
$19.00/month/ user DATAGYM empowers data scientists and machine learning professionals to annotate images at speeds that are ten times quicker than traditional methods. The use of AI-driven annotation tools minimizes the manual effort required, allowing for more time to refine machine learning models and enhancing the speed at which new products are launched. By streamlining data preparation, you can significantly boost the efficiency of your computer vision initiatives, reducing the time required by as much as half. This not only accelerates project timelines but also facilitates a more agile approach to innovation in the field. -
18
Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
-
19
DataRobot
DataRobot
AI Cloud represents an innovative strategy designed to meet the current demands, challenges, and potential of artificial intelligence. This comprehensive system acts as a single source of truth, expediting the process of bringing AI solutions into production for organizations of all sizes. Users benefit from a collaborative environment tailored for ongoing enhancements throughout the entire AI lifecycle. The AI Catalog simplifies the process of discovering, sharing, tagging, and reusing data, which accelerates deployment and fosters teamwork. This catalog ensures that users can easily access relevant data to resolve business issues while maintaining high standards of security, compliance, and consistency. If your database is subject to a network policy restricting access to specific IP addresses, please reach out to Support for assistance in obtaining a list of IPs that should be added to your network policy for whitelisting, ensuring that your operations run smoothly. Additionally, leveraging AI Cloud can significantly improve your organization’s ability to innovate and adapt in a rapidly evolving technological landscape. -
20
Cauliflower
Cauliflower
Cauliflower can process feedback and comments for any type of service or product. Cauliflower uses Artificial Intelligence (AI) to identify the most important topics, evaluate them, and establish relationships. Machine learning models in-house developed for extracting content and evaluating sentiment. Intuitive dashboards that offer filter options and drill-downs. You can use included variables to indicate language, weight, ID and time. In the dropdown, you can define your own filter variables. Cauliflower can translate the results into a common language if necessary. Instead of reading customer feedback sporadically and quoting individual opinions, define a company-wide language. -
21
Deepnote
Deepnote
FreeDeepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud. -
22
Scribble Data
Scribble Data
Scribble Data empowers organizations to enhance their raw data, enabling swift and reliable decision-making to address ongoing business challenges. This platform provides data-driven support for enterprises, facilitating the generation of high-quality insights that streamline the decision-making process. With advanced analytics driven by machine learning, businesses can tackle their persistent decision-making issues rapidly. You can focus on essential tasks while Scribble Data manages the complexities of ensuring dependable and trustworthy data availability for informed choices. Take advantage of tailored data-driven workflows that simplify data usage and lessen reliance on data science and machine learning teams. Experience accelerated transformation from concept to operational data products in just a few weeks, thanks to feature engineering capabilities that effectively handle large volumes and complex data at scale. Additionally, this seamless integration fosters a culture of data-centric operations, positioning your organization for long-term success in an ever-evolving marketplace. -
23
OpenText Magellan
OpenText
A platform for Machine Learning and Predictive Analytics enhances data-driven decision-making and propels business growth through sophisticated artificial intelligence within an integrated machine learning and big data analytics framework. OpenText Magellan leverages AI technologies to deliver predictive analytics through user-friendly and adaptable data visualizations that enhance the utility of business intelligence. The implementation of artificial intelligence software streamlines the big data processing task, providing essential business insights in a format that aligns with the organization’s most significant goals. By enriching business operations with a tailored combination of features such as predictive modeling, data exploration tools, data mining methods, and IoT data analytics, companies can effectively utilize their data to refine their decision-making processes based on actionable business intelligence and analytics. This comprehensive approach not only improves operational efficiency but also fosters a culture of data-driven innovation within the organization. -
24
ABEJA Platform
ABEJA
The ABEJA platform represents a groundbreaking AI solution that integrates state-of-the-art technologies, including IoT, Big Data, and Deep Learning. In 2013, the volume of data circulated reached 4.4 zettabytes, and this figure is projected to soar to 44 zettabytes by 2020. This raises critical questions about how we can efficiently gather and leverage such vast and varied data sets, as well as how we can extract new insights from them. The ABEJA Platform stands out as one of the most sophisticated AI technologies globally, addressing the increasingly complex technological challenges ahead by facilitating the effective use of diverse data types. It offers advanced capabilities for image analysis through Deep Learning and processes extensive data swiftly with its cutting-edge decentralized architecture. Furthermore, it employs Machine Learning and Deep Learning techniques to analyze the amassed data, making it straightforward to share analysis results across different systems via API. As the data landscape continues to evolve, the need for such innovative platforms becomes ever more critical. -
25
StreamFlux
Fractal
Data plays an essential role in the process of establishing, optimizing, and expanding your enterprise. Nevertheless, fully harnessing the potential of data can prove difficult as many businesses encounter issues like limited data access, mismatched tools, escalating expenses, and delayed outcomes. In simple terms, those who can effectively convert unrefined data into actionable insights will excel in the current business environment. A crucial aspect of achieving this is enabling all team members to analyze, create, and collaborate on comprehensive AI and machine learning projects efficiently and within a unified platform. Streamflux serves as a comprehensive solution for addressing your data analytics and AI needs. Our user-friendly platform empowers you to construct complete data solutions, utilize models to tackle intricate inquiries, and evaluate user interactions. Whether your focus is on forecasting customer attrition, estimating future earnings, or crafting personalized recommendations, you can transform raw data into meaningful business results within days rather than months. By leveraging our platform, organizations can not only enhance efficiency but also foster a culture of data-driven decision-making. -
26
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
27
DataStories
DataStories International
Forrester research indicates that a significant portion, estimated between 60% and 73%, of data generated within enterprises remains untapped for analytical purposes. Discover how we can assist you in unlocking the full potential of your data. DataStories has made sophisticated machine learning accessible and comprehensible for non-technical professionals. The DataStories Platform is an AI-driven tool designed to provide clear and intuitive explanations in under 30 minutes, enabling you to understand, forecast, and guide your business objectives using relevant data. Our mission at DataStories is to empower individuals to make decisions based on data insights. We provide a self-service analytics platform tailored for business specialists who often find themselves excluded from analytics due to the complexity of conventional tools. With our platform, you can conduct your own analyses and present your findings in the form of engaging and explainable data stories, which can easily be exported to PowerPoint for broader sharing and impact. By simplifying the analytics process, we aim to democratize data-driven decision-making across organizations. -
28
Appsilon
Appsilon
Appsilon specializes in cutting-edge data analytics, machine learning, and managed service solutions tailored for Fortune 500 companies, non-governmental organizations, and non-profits. We excel in creating the most sophisticated R Shiny applications, enabling us to efficiently develop and expand enterprise-level Shiny dashboards. Our custom machine learning frameworks empower us to deliver prototypes for Computer Vision, Natural Language Processing, and fraud detection in just a week. Above all, our mission is to make a meaningful difference in the world. Through our AI For Good Initiative, we actively apply our expertise to initiatives that enhance human safety and support the conservation of wildlife across the globe. Recently, our efforts have included using computer vision to combat poaching in Africa, conducting satellite image analyses to evaluate damage from natural disasters, and developing tools for assessing COVID-19 risks. Additionally, Appsilon takes pride in being at the forefront of open-source innovation, fostering collaboration and transparency in technology development. Our commitment to these values positions us as leaders in both ethical practices and technological advancements. -
29
Enhance the efficiency of your deep learning projects and reduce the time it takes to realize value through AI model training and inference. As technology continues to improve in areas like computation, algorithms, and data accessibility, more businesses are embracing deep learning to derive and expand insights in fields such as speech recognition, natural language processing, and image classification. This powerful technology is capable of analyzing text, images, audio, and video on a large scale, allowing for the generation of patterns used in recommendation systems, sentiment analysis, financial risk assessments, and anomaly detection. The significant computational resources needed to handle neural networks stem from their complexity, including multiple layers and substantial training data requirements. Additionally, organizations face challenges in demonstrating the effectiveness of deep learning initiatives that are executed in isolation, which can hinder broader adoption and integration. The shift towards more collaborative approaches may help mitigate these issues and enhance the overall impact of deep learning strategies within companies.
-
30
Teradata VantageCloud
Teradata
1 RatingVantageCloud by Teradata is a next-gen cloud analytics ecosystem built to unify disparate data sources, deliver real-time AI-powered insights, and drive enterprise innovation with unprecedented efficiency. The platform includes VantageCloud Lake, designed for elastic scalability and GPU-accelerated AI workloads, and VantageCloud Enterprise, which supports robust analytics capabilities across secure hybrid and multi-cloud deployments. It seamlessly integrates with leading cloud providers like AWS, Azure, and Google Cloud, and supports open table formats like Apache Iceberg for greater data flexibility. With built-in support for advanced analytics, workload management, and cross-functional collaboration, VantageCloud provides the agility and power modern enterprises need to accelerate digital transformation and optimize operational outcomes. -
31
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups. -
32
Google Colab
Google
8 RatingsGoogle Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows. -
33
Key Ward
Key Ward
€9,000 per yearEffortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors. -
34
Peak
Peak
Introducing a groundbreaking decision intelligence platform that empowers business leaders to enhance their decision-making processes. Our Connected Decision Intelligence system, known as CODI, has been meticulously designed by Peak to act as an intelligence layer, bridging the gap between various systems and unlocking the potential of your data like never before. CODI allows for the swift implementation of AI solutions, tapping into the full capabilities of your data through its distinctive full-stack functionalities. It empowers data scientists and engineers to take charge of all facets involved in creating and deploying AI applications, efficiently and on a large scale. By utilizing CODI, AI initiatives evolve from mere trials into fully operational solutions that yield tangible benefits and outcomes. Constructed on a robust enterprise-grade infrastructure, CODI can manage extensive data sets and integrates effortlessly with pre-existing technology ecosystems. Furthermore, it allows for deeper insights and the integration of data sourced from all corners of your organization, ultimately driving improved strategies and performance. This innovative approach ensures that organizations can make informed decisions backed by comprehensive data analysis. -
35
MLJAR Studio
MLJAR
$20 per monthThis desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science. -
36
Hex
Hex
$24 per user per monthHex unites the finest features of notebooks, business intelligence, and documentation into a cohesive and collaborative user interface, establishing itself as a contemporary Data Workspace. It simplifies the process of connecting to various data sources and allows for collaborative analysis via SQL and Python-based notebooks, enabling users to share their findings as interactive data applications and narratives. Upon entering Hex, the Projects page serves as the default landing area, making it easy to access both your own projects and those shared within your workspace. The outline feature offers a streamlined overview of all cells contained in a project's Logic View, where each cell is annotated with the variables it defines. Furthermore, cells that produce visible outputs—such as chart cells, input parameters, and markdown cells—provide a preview of their results. By clicking on any cell within the outline, users can instantly navigate to that specific location in the logic, enhancing the overall efficiency of the workflow. This functionality ensures that collaboration and data exploration are both intuitive and effective. -
37
Lentiq
Lentiq
Lentiq offers a collaborative data lake as a service that empowers small teams to achieve significant results. It allows users to swiftly execute data science, machine learning, and data analysis within the cloud platform of their choice. With Lentiq, teams can seamlessly ingest data in real time, process and clean it, and share their findings effortlessly. This platform also facilitates the building, training, and internal sharing of models, enabling data teams to collaborate freely and innovate without limitations. Data lakes serve as versatile storage and processing environments, equipped with machine learning, ETL, and schema-on-read querying features, among others. If you’re delving into the realm of data science, a data lake is essential for your success. In today’s landscape, characterized by the Post-Hadoop era, large centralized data lakes have become outdated. Instead, Lentiq introduces data pools—interconnected mini-data lakes across multiple clouds—that work harmoniously to provide a secure, stable, and efficient environment for data science endeavors. This innovative approach enhances the overall agility and effectiveness of data-driven projects. -
38
TrueFoundry
TrueFoundry
$5 per monthTrueFoundry is a cloud-native platform-as-a-service for machine learning training and deployment built on Kubernetes, designed to empower machine learning teams to train and launch models with the efficiency and reliability typically associated with major tech companies, all while ensuring scalability to reduce costs and speed up production release. By abstracting the complexities of Kubernetes, it allows data scientists to work in a familiar environment without the overhead of managing infrastructure. Additionally, it facilitates the seamless deployment and fine-tuning of large language models, prioritizing security and cost-effectiveness throughout the process. TrueFoundry features an open-ended, API-driven architecture that integrates smoothly with internal systems, enables deployment on a company's existing infrastructure, and upholds stringent data privacy and DevSecOps standards, ensuring that teams can innovate without compromising on security. This comprehensive approach not only streamlines workflows but also fosters collaboration among teams, ultimately driving faster and more efficient model deployment. -
39
IBM Cloud Pak for Data
IBM
$699 per monthThe primary obstacle in expanding AI-driven decision-making lies in the underutilization of data. IBM Cloud Pak® for Data provides a cohesive platform that integrates a data fabric, enabling seamless connection and access to isolated data, whether it resides on-premises or in various cloud environments, without necessitating data relocation. It streamlines data accessibility by automatically identifying and organizing data to present actionable knowledge assets to users, while simultaneously implementing automated policy enforcement to ensure secure usage. To further enhance the speed of insights, this platform incorporates a modern cloud data warehouse that works in harmony with existing systems. It universally enforces data privacy and usage policies across all datasets, ensuring compliance is maintained. By leveraging a high-performance cloud data warehouse, organizations can obtain insights more rapidly. Additionally, the platform empowers data scientists, developers, and analysts with a comprehensive interface to construct, deploy, and manage reliable AI models across any cloud infrastructure. Moreover, enhance your analytics capabilities with Netezza, a robust data warehouse designed for high performance and efficiency. This comprehensive approach not only accelerates decision-making but also fosters innovation across various sectors. -
40
Zepl
Zepl
Coordinate, explore, and oversee all projects within your data science team efficiently. With Zepl's advanced search functionality, you can easily find and repurpose both models and code. The enterprise collaboration platform provided by Zepl allows you to query data from various sources like Snowflake, Athena, or Redshift while developing your models using Python. Enhance your data interaction with pivoting and dynamic forms that feature visualization tools such as heatmaps, radar, and Sankey charts. Each time you execute your notebook, Zepl generates a new container, ensuring a consistent environment for your model runs. Collaborate with teammates in a shared workspace in real time, or leave feedback on notebooks for asynchronous communication. Utilize precise access controls to manage how your work is shared, granting others read, edit, and execute permissions to facilitate teamwork and distribution. All notebooks benefit from automatic saving and version control, allowing you to easily name, oversee, and revert to previous versions through a user-friendly interface, along with smooth exporting capabilities to Github. Additionally, the platform supports integration with external tools, further streamlining your workflow and enhancing productivity. -
41
IBM Analytics for Apache Spark offers a versatile and cohesive Spark service that enables data scientists to tackle ambitious and complex inquiries while accelerating the achievement of business outcomes. This user-friendly, continually available managed service comes without long-term commitments or risks, allowing for immediate exploration. Enjoy the advantages of Apache Spark without vendor lock-in, supported by IBM's dedication to open-source technologies and extensive enterprise experience. With integrated Notebooks serving as a connector, the process of coding and analytics becomes more efficient, enabling you to focus more on delivering results and fostering innovation. Additionally, this managed Apache Spark service provides straightforward access to powerful machine learning libraries, alleviating the challenges, time investment, and risks traditionally associated with independently managing a Spark cluster. As a result, teams can prioritize their analytical goals and enhance their productivity significantly.
-
42
Obviously AI
Obviously AI
$75 per monthExperience the entire journey of developing machine learning algorithms and forecasting results with just a single click. Not every dataset is inherently suitable for machine learning; leverage the Data Dialog to effortlessly refine your data without the hassle of file manipulation. You can easily distribute your prediction reports among your team or make them publicly accessible, allowing anyone to engage with your model and generate predictions. Integrate dynamic ML predictions directly into your application through our user-friendly low-code API. Assess factors like willingness to pay, evaluate leads, and more, all in real-time. Obviously AI equips you with the latest groundbreaking algorithms while ensuring top-notch performance is maintained. You can now accurately forecast revenue, streamline supply chains, and tailor marketing efforts to individual needs. With just a CSV upload or a quick integration with your preferred data sources, you can select your prediction column from a convenient dropdown menu and watch as we automatically construct the AI for you. Additionally, enjoy beautifully crafted visualizations of predicted outcomes, identify key influencers, and explore "what-if" scenarios to better understand potential futures. This innovative approach transforms the way you interact with data and make predictions. -
43
V7 Darwin
V7
$150V7 Darwin is a data labeling and training platform designed to automate and accelerate the process of creating high-quality datasets for machine learning. With AI-assisted labeling and tools for annotating images, videos, and more, V7 makes it easy for teams to create accurate and consistent data annotations quickly. The platform supports complex tasks such as segmentation and keypoint labeling, allowing businesses to streamline their data preparation process and improve model performance. V7 Darwin also offers real-time collaboration and customizable workflows, making it suitable for enterprises and research teams alike. -
44
Alation stands out as the pioneering company to introduce a data catalog to the market, significantly enhancing the ways individuals discover, comprehend, trust, utilize, and repurpose data. By leading the charge in active, non-invasive data governance, Alation effectively facilitates data democratization while ensuring compliance on a large scale, providing users with the necessary data along with clear guidance on its appropriate usage. The company addresses some of the most pressing data challenges today by merging human insights with advanced AI and machine learning technologies. Currently, over 350 enterprises rely on Alation to empower their decision-making with confidence based on data. Notable clients include American Family Insurance, Exelon, Munich Re, and Pfizer, all of whom benefit from Alation’s innovative solutions. This widespread adoption underscores the company's impact on fostering a data-driven culture across various industries.
-
45
FortressIQ
Automation Anywhere
FortressIQ is the industry's most advanced process-intelligence platform. It allows enterprises to decode work and transform experiences. FortressIQ combines innovative computer vision with artificial intelligence to provide unprecedented process insights. It is extremely fast and delivers detail and accuracy that are unattainable using traditional methods. The platform automatically acquires process data across multiple systems. This empowers enterprises to understand, monitor and improve their operations, employee and customer experience, and every business process. FortressIQ was established in 2017 and is supported by Lightspeed Venture Partners and Boldstart Ventures as well as Comcast Ventures and Eniac Ventures. Continuously and automatically identify inefficiencies and process variations to determine optimal process paths and reduce time to automate.