Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Gemini 2.5 Deep Think
Gemini 2.5 Deep Think represents an advanced reasoning capability within the Gemini 2.5 suite, employing innovative reinforcement learning strategies and extended, parallel reasoning to address intricate, multi-faceted challenges in disciplines such as mathematics, programming, scientific inquiry, and strategic decision-making. By generating and assessing various lines of reasoning prior to delivering a response, it yields responses that are not only more detailed and creative but also more accurate, while accommodating longer interactions and integrating tools like code execution and web searches. Its performance has achieved top-tier results on challenging benchmarks, including LiveCodeBench V6 and Humanity’s Last Exam, showcasing significant improvements over earlier iterations in demanding areas. Furthermore, internal assessments reveal enhancements in content safety and tone-objectivity, although there is a noted increase in the model's propensity to reject harmless requests; in light of this, Google is actively conducting frontier safety evaluations and implementing measures to mitigate risks as the model continues to evolve. This ongoing commitment to safety underscores the importance of responsible AI development.
Learn more
Gemini 2.5 Pro Deep Think
Gemini 2.5 Pro Deep Think is the latest evolution of Google’s Gemini models, specifically designed to tackle more complex tasks with better accuracy and efficiency. The key feature of Deep Think enables the AI to think through its responses, improving its reasoning and enhancing decision-making processes. This model is a game-changer for coding, problem-solving, and AI-driven conversations, with support for multimodality, long context windows, and advanced coding capabilities. It integrates native audio outputs for richer, more expressive interactions and is optimized for speed and accuracy across various benchmarks. With the addition of this advanced reasoning mode, Gemini 2.5 Pro Deep Think is not just faster but also smarter, handling complex queries with ease.
Learn more