Best SmolLM2 Alternatives in 2025

Find the top alternatives to SmolLM2 currently available. Compare ratings, reviews, pricing, and features of SmolLM2 alternatives in 2025. Slashdot lists the best SmolLM2 alternatives on the market that offer competing products that are similar to SmolLM2. Sort through SmolLM2 alternatives below to make the best choice for your needs

  • 1
    Orpheus TTS Reviews
    Canopy Labs has unveiled Orpheus, an innovative suite of advanced speech large language models (LLMs) aimed at achieving human-like speech generation capabilities. Utilizing the Llama-3 architecture, these models have been trained on an extensive dataset comprising over 100,000 hours of English speech, allowing them to generate speech that exhibits natural intonation, emotional depth, and rhythmic flow that outperforms existing high-end closed-source alternatives. Orpheus also features zero-shot voice cloning, enabling users to mimic voices without any need for prior fine-tuning, and provides easy-to-use tags for controlling emotion and intonation. The models are engineered for low latency, achieving approximately 200ms streaming latency for real-time usage, which can be further decreased to around 100ms when utilizing input streaming. Canopy Labs has made available both pre-trained and fine-tuned models with 3 billion parameters under the flexible Apache 2.0 license, with future intentions to offer smaller models with 1 billion, 400 million, and 150 million parameters to cater to devices with limited resources. This strategic move is expected to broaden accessibility and application potential across various platforms and use cases.
  • 2
    BitNet Reviews
    Microsoft’s BitNet b1.58 2B4T is a breakthrough in AI with its native 1-bit LLM architecture. This model has been optimized for computational efficiency, offering significant reductions in memory, energy, and latency while still achieving high performance on various AI benchmarks. It supports a range of natural language processing tasks, making it an ideal solution for scalable and cost-effective AI implementations in industries requiring fast, energy-efficient inference and robust language capabilities.
  • 3
    Gemini Nano Reviews
    Google's Gemini Nano is an efficient and lightweight AI model engineered to perform exceptionally well in environments with limited resources. Specifically designed for mobile applications and edge computing, it merges Google's sophisticated AI framework with innovative optimization strategies, ensuring high-speed performance and accuracy are preserved. This compact model stands out in various applications, including voice recognition, real-time translation, natural language processing, and delivering personalized recommendations. Emphasizing both privacy and efficiency, Gemini Nano processes information locally to reduce dependence on cloud services while ensuring strong security measures are in place. Its versatility and minimal power requirements make it perfectly suited for smart devices, IoT applications, and portable AI technologies. As a result, it opens up new possibilities for developers looking to integrate advanced AI into everyday gadgets.
  • 4
    Reka Flash 3 Reviews
    Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms.
  • 5
    OpenAI o3-mini Reviews
    The o3-mini by OpenAI is a streamlined iteration of the sophisticated o3 AI model, delivering robust reasoning skills in a more compact and user-friendly format. It specializes in simplifying intricate instructions into digestible steps, making it particularly adept at coding, competitive programming, and tackling mathematical and scientific challenges. This smaller model maintains the same level of accuracy and logical reasoning as the larger version, while operating with lower computational demands, which is particularly advantageous in environments with limited resources. Furthermore, o3-mini incorporates inherent deliberative alignment, promoting safe, ethical, and context-sensitive decision-making. Its versatility makes it an invaluable resource for developers, researchers, and enterprises striving for an optimal mix of performance and efficiency in their projects. The combination of these features positions o3-mini as a significant tool in the evolving landscape of AI-driven solutions.
  • 6
    Phi-4-mini-flash-reasoning Reviews
    Phi-4-mini-flash-reasoning is a 3.8 billion-parameter model that is part of Microsoft's Phi series, specifically designed for edge, mobile, and other environments with constrained resources where processing power, memory, and speed are limited. This innovative model features the SambaY hybrid decoder architecture, integrating Gated Memory Units (GMUs) with Mamba state-space and sliding-window attention layers, achieving up to ten times the throughput and a latency reduction of 2 to 3 times compared to its earlier versions without compromising on its ability to perform complex mathematical and logical reasoning. With a support for a context length of 64K tokens and being fine-tuned on high-quality synthetic datasets, it is particularly adept at handling long-context retrieval, reasoning tasks, and real-time inference, all manageable on a single GPU. Available through platforms such as Azure AI Foundry, NVIDIA API Catalog, and Hugging Face, Phi-4-mini-flash-reasoning empowers developers to create applications that are not only fast but also scalable and capable of intensive logical processing. This accessibility allows a broader range of developers to leverage its capabilities for innovative solutions.
  • 7
    Ministral 3B Reviews
    Mistral AI has launched two cutting-edge models designed for on-device computing and edge applications, referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models redefine the standards of knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B category. They are versatile enough to be utilized or customized for a wide range of applications, including managing complex workflows and developing specialized task-focused workers. Capable of handling up to 128k context length (with the current version supporting 32k on vLLM), Ministral 8B also incorporates a unique interleaved sliding-window attention mechanism to enhance both speed and memory efficiency during inference. Designed for low-latency and compute-efficient solutions, these models excel in scenarios such as offline translation, smart assistants that don't rely on internet connectivity, local data analysis, and autonomous robotics. Moreover, when paired with larger language models like Mistral Large, les Ministraux can effectively function as streamlined intermediaries, facilitating function-calling within intricate multi-step workflows, thereby expanding their applicability across various domains. This combination not only enhances performance but also broadens the scope of what can be achieved with AI in edge computing.
  • 8
    Mistral Small 3.1 Reviews
    Mistral Small 3.1 represents a cutting-edge, multimodal, and multilingual AI model that has been released under the Apache 2.0 license. This upgraded version builds on Mistral Small 3, featuring enhanced text capabilities and superior multimodal comprehension, while also accommodating an extended context window of up to 128,000 tokens. It demonstrates superior performance compared to similar models such as Gemma 3 and GPT-4o Mini, achieving impressive inference speeds of 150 tokens per second. Tailored for adaptability, Mistral Small 3.1 shines in a variety of applications, including instruction following, conversational support, image analysis, and function execution, making it ideal for both business and consumer AI needs. The model's streamlined architecture enables it to operate efficiently on hardware such as a single RTX 4090 or a Mac equipped with 32GB of RAM, thus supporting on-device implementations. Users can download it from Hugging Face and access it through Mistral AI's developer playground, while it is also integrated into platforms like Google Cloud Vertex AI, with additional accessibility on NVIDIA NIM and more. This flexibility ensures that developers can leverage its capabilities across diverse environments and applications.
  • 9
    Gemma 3n Reviews
    Introducing Gemma 3n, our cutting-edge open multimodal model designed specifically for optimal on-device performance and efficiency. With a focus on responsive and low-footprint local inference, Gemma 3n paves the way for a new generation of intelligent applications that can be utilized on the move. It has the capability to analyze and respond to a blend of images and text, with plans to incorporate video and audio functionalities in the near future. Developers can create smart, interactive features that prioritize user privacy and function seamlessly without an internet connection. The model boasts a mobile-first architecture, significantly minimizing memory usage. Co-developed by Google's mobile hardware teams alongside industry experts, it maintains a 4B active memory footprint while also offering the flexibility to create submodels for optimizing quality and latency. Notably, Gemma 3n represents our inaugural open model built on this revolutionary shared architecture, enabling developers to start experimenting with this advanced technology today in its early preview. As technology evolves, we anticipate even more innovative applications to emerge from this robust framework.
  • 10
    Ai2 OLMoE Reviews

    Ai2 OLMoE

    The Allen Institute for Artificial Intelligence

    Free
    Ai2 OLMoE is a completely open-source mixture-of-experts language model that operates entirely on-device, ensuring that you can experiment with the model in a private and secure manner. This application is designed to assist researchers in advancing on-device intelligence and to allow developers to efficiently prototype innovative AI solutions without the need for cloud connectivity. OLMoE serves as a highly efficient variant within the Ai2 OLMo model family. Discover the capabilities of state-of-the-art local models in performing real-world tasks, investigate methods to enhance smaller AI models, and conduct local tests of your own models utilizing our open-source codebase. Furthermore, you can seamlessly integrate OLMoE into various iOS applications, as the app prioritizes user privacy and security by functioning entirely on-device. Users can also easily share the outcomes of their interactions with friends or colleagues. Importantly, both the OLMoE model and the application code are fully open source, offering a transparent and collaborative approach to AI development. By leveraging this model, developers can contribute to the growing field of on-device AI while maintaining high standards of user privacy.
  • 11
    GPT-4.1 nano Reviews

    GPT-4.1 nano

    OpenAI

    $0.10 per 1M tokens (input)
    GPT-4.1 nano is a lightweight and fast version of GPT-4.1, designed for applications that prioritize speed and affordability. This model can handle up to 1 million tokens of context, making it suitable for tasks such as text classification, autocompletion, and real-time decision-making. With reduced latency and operational costs, GPT-4.1 nano is the ideal choice for businesses seeking powerful AI capabilities on a budget, without sacrificing essential performance features.
  • 12
    Mu Reviews
    On June 23, 2025, Microsoft unveiled Mu, an innovative 330-million-parameter encoder–decoder language model specifically crafted to enhance the agent experience within Windows environments by effectively translating natural language inquiries into function calls for Settings, all processed on-device via NPUs at a remarkable speed of over 100 tokens per second while ensuring impressive accuracy. By leveraging Phi Silica optimizations, Mu’s encoder–decoder design employs a fixed-length latent representation that significantly reduces both computational demands and memory usage, achieving a 47 percent reduction in first-token latency and a decoding speed that is 4.7 times greater on Qualcomm Hexagon NPUs when compared to other decoder-only models. Additionally, the model benefits from hardware-aware tuning techniques, which include a thoughtful 2/3–1/3 split of encoder and decoder parameters, shared weights for input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, allowing for swift inference rates exceeding 200 tokens per second on devices such as the Surface Laptop 7, along with sub-500 ms response times for settings-related queries. This combination of features positions Mu as a groundbreaking advancement in on-device language processing capabilities.
  • 13
    Molmo Reviews
    Molmo represents a cutting-edge family of multimodal AI models crafted by the Allen Institute for AI (Ai2). These innovative models are specifically engineered to connect the divide between open-source and proprietary systems, ensuring they perform competitively across numerous academic benchmarks and assessments by humans. In contrast to many existing multimodal systems that depend on synthetic data sourced from proprietary frameworks, Molmo is exclusively trained on openly available data, which promotes transparency and reproducibility in AI research. A significant breakthrough in the development of Molmo is the incorporation of PixMo, a unique dataset filled with intricately detailed image captions gathered from human annotators who utilized speech-based descriptions, along with 2D pointing data that empowers the models to respond to inquiries with both natural language and non-verbal signals. This capability allows Molmo to engage with its surroundings in a more sophisticated manner, such as by pointing to specific objects within images, thereby broadening its potential applications in diverse fields, including robotics, augmented reality, and interactive user interfaces. Furthermore, the advancements made by Molmo set a new standard for future multimodal AI research and application development.
  • 14
    Llama 3.2 Reviews
    The latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains.
  • 15
    Wan2.1 Reviews
    Wan2.1 represents an innovative open-source collection of sophisticated video foundation models aimed at advancing the frontiers of video creation. This state-of-the-art model showcases its capabilities in a variety of tasks, such as Text-to-Video, Image-to-Video, Video Editing, and Text-to-Image, achieving top-tier performance on numerous benchmarks. Designed for accessibility, Wan2.1 is compatible with consumer-grade GPUs, allowing a wider range of users to utilize its features, and it accommodates multiple languages, including both Chinese and English for text generation. The model's robust video VAE (Variational Autoencoder) guarantees impressive efficiency along with superior preservation of temporal information, making it particularly well-suited for producing high-quality video content. Its versatility enables applications in diverse fields like entertainment, marketing, education, and beyond, showcasing the potential of advanced video technologies.
  • 16
    Gemini 1.5 Pro Reviews
    The Gemini 1.5 Pro AI model represents a pinnacle in language modeling, engineered to produce remarkably precise, context-sensitive, and human-like replies suitable for a wide range of uses. Its innovative neural framework allows it to excel in tasks involving natural language comprehension, generation, and reasoning. This model has been meticulously fine-tuned for adaptability, making it capable of handling diverse activities such as content creation, coding, data analysis, and intricate problem-solving. Its sophisticated algorithms provide a deep understanding of language, allowing for smooth adjustments to various domains and conversational tones. Prioritizing both scalability and efficiency, the Gemini 1.5 Pro is designed to cater to both small applications and large-scale enterprise deployments, establishing itself as an invaluable asset for driving productivity and fostering innovation. Moreover, its ability to learn from user interactions enhances its performance, making it even more effective in real-world scenarios.
  • 17
    Llama 3.3 Reviews
    The newest version in the Llama series, Llama 3.3, represents a significant advancement in language models aimed at enhancing AI's capabilities in understanding and communication. It boasts improved contextual reasoning, superior language generation, and advanced fine-tuning features aimed at producing exceptionally accurate, human-like responses across a variety of uses. This iteration incorporates a more extensive training dataset, refined algorithms for deeper comprehension, and mitigated biases compared to earlier versions. Llama 3.3 stands out in applications including natural language understanding, creative writing, technical explanations, and multilingual interactions, making it a crucial asset for businesses, developers, and researchers alike. Additionally, its modular architecture facilitates customizable deployment in specific fields, ensuring it remains versatile and high-performing even in large-scale applications. With these enhancements, Llama 3.3 is poised to redefine the standards of AI language models.
  • 18
    PaLM 2 Reviews
    PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation.
  • 19
    Phi-2 Reviews
    We are excited to announce the launch of Phi-2, a language model featuring 2.7 billion parameters that excels in reasoning and language comprehension, achieving top-tier results compared to other base models with fewer than 13 billion parameters. In challenging benchmarks, Phi-2 competes with and often surpasses models that are up to 25 times its size, a feat made possible by advancements in model scaling and meticulous curation of training data. Due to its efficient design, Phi-2 serves as an excellent resource for researchers interested in areas such as mechanistic interpretability, enhancing safety measures, or conducting fine-tuning experiments across a broad spectrum of tasks. To promote further exploration and innovation in language modeling, Phi-2 has been integrated into the Azure AI Studio model catalog, encouraging collaboration and development within the research community. Researchers can leverage this model to unlock new insights and push the boundaries of language technology.
  • 20
    GPT-4.1 mini Reviews

    GPT-4.1 mini

    OpenAI

    $0.40 per 1M tokens (input)
    GPT-4.1 mini is a streamlined version of GPT-4.1, offering the same core capabilities in coding, instruction adherence, and long-context comprehension, but with faster performance and lower costs. Ideal for developers seeking to integrate AI into real-time applications, GPT-4.1 mini maintains a 1 million token context window and is well-suited for tasks that demand low-latency responses. It is a cost-effective option for businesses that need powerful AI capabilities without the high overhead associated with larger models.
  • 21
    Megatron-Turing Reviews
    The Megatron-Turing Natural Language Generation model (MT-NLG) stands out as the largest and most advanced monolithic transformer model for the English language, boasting an impressive 530 billion parameters. This 105-layer transformer architecture significantly enhances the capabilities of previous leading models, particularly in zero-shot, one-shot, and few-shot scenarios. It exhibits exceptional precision across a wide range of natural language processing tasks, including completion prediction, reading comprehension, commonsense reasoning, natural language inference, and word sense disambiguation. To foster further research on this groundbreaking English language model and to allow users to explore and utilize its potential in various language applications, NVIDIA has introduced an Early Access program for its managed API service dedicated to the MT-NLG model. This initiative aims to facilitate experimentation and innovation in the field of natural language processing.
  • 22
    Ministral 8B Reviews
    Mistral AI has unveiled two cutting-edge models specifically designed for on-device computing and edge use cases, collectively referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models stand out due to their capabilities in knowledge retention, commonsense reasoning, function-calling, and overall efficiency, all while remaining within the sub-10B parameter range. They boast support for a context length of up to 128k, making them suitable for a diverse range of applications such as on-device translation, offline smart assistants, local analytics, and autonomous robotics. Notably, Ministral 8B incorporates an interleaved sliding-window attention mechanism, which enhances both the speed and memory efficiency of inference processes. Both models are adept at serving as intermediaries in complex multi-step workflows, skillfully managing functions like input parsing, task routing, and API interactions based on user intent, all while minimizing latency and operational costs. Benchmark results reveal that les Ministraux consistently exceed the performance of similar models across a variety of tasks, solidifying their position in the market. As of October 16, 2024, these models are now available for developers and businesses, with Ministral 8B being offered at a competitive rate of $0.1 for every million tokens utilized. This pricing structure enhances accessibility for users looking to integrate advanced AI capabilities into their solutions.
  • 23
    Phi-4 Reviews
    Phi-4 is an advanced small language model (SLM) comprising 14 billion parameters, showcasing exceptional capabilities in intricate reasoning tasks, particularly in mathematics, alongside typical language processing functions. As the newest addition to the Phi family of small language models, Phi-4 illustrates the potential advancements we can achieve while exploring the limits of SLM technology. It is currently accessible on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and is set to be released on Hugging Face in the near future. Due to significant improvements in processes such as the employment of high-quality synthetic datasets and the careful curation of organic data, Phi-4 surpasses both comparable and larger models in mathematical reasoning tasks. This model not only emphasizes the ongoing evolution of language models but also highlights the delicate balance between model size and output quality. As we continue to innovate, Phi-4 stands as a testament to our commitment to pushing the boundaries of what's achievable within the realm of small language models.
  • 24
    Llama Reviews
    Llama (Large Language Model Meta AI) stands as a cutting-edge foundational large language model aimed at helping researchers push the boundaries of their work within this area of artificial intelligence. By providing smaller yet highly effective models like Llama, the research community can benefit even if they lack extensive infrastructure, thus promoting greater accessibility in this dynamic and rapidly evolving domain. Creating smaller foundational models such as Llama is advantageous in the landscape of large language models, as it demands significantly reduced computational power and resources, facilitating the testing of innovative methods, confirming existing research, and investigating new applications. These foundational models leverage extensive unlabeled datasets, making them exceptionally suitable for fine-tuning across a range of tasks. We are offering Llama in multiple sizes (7B, 13B, 33B, and 65B parameters), accompanied by a detailed Llama model card that outlines our development process while adhering to our commitment to Responsible AI principles. By making these resources available, we aim to empower a broader segment of the research community to engage with and contribute to advancements in AI.
  • 25
    Amazon Nova Sonic Reviews
    Amazon Nova Sonic is an advanced speech-to-speech model that offers real-time, lifelike voice interactions while maintaining exceptional price efficiency. By integrating speech comprehension and generation into one cohesive model, it allows developers to craft engaging and fluid conversational AI solutions with minimal delay. This system fine-tunes its replies by analyzing the prosody of the input speech, including elements like rhythm and tone, which leads to more authentic conversations. Additionally, Nova Sonic features function calling and agentic workflows that facilitate interactions with external services and APIs, utilizing knowledge grounding with enterprise data through Retrieval-Augmented Generation (RAG). Its powerful speech understanding capabilities encompass both American and British English across a variety of speaking styles and acoustic environments, with plans to incorporate more languages in the near future. Notably, Nova Sonic manages interruptions from users seamlessly while preserving the context of the conversation, demonstrating its resilience against background noise interference and enhancing the overall user experience. This technology represents a significant leap forward in conversational AI, ensuring that interactions are not only efficient but also genuinely engaging.
  • 26
    Pixtral Large Reviews
    Pixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations.
  • 27
    Yi-Large Reviews

    Yi-Large

    01.AI

    $0.19 per 1M input token
    Yi-Large is an innovative proprietary large language model created by 01.AI, featuring an impressive context length of 32k and a cost structure of $2 for each million tokens for both inputs and outputs. Renowned for its superior natural language processing abilities, common-sense reasoning, and support for multiple languages, it competes effectively with top models such as GPT-4 and Claude3 across various evaluations. This model is particularly adept at handling tasks that involve intricate inference, accurate prediction, and comprehensive language comprehension, making it ideal for applications such as knowledge retrieval, data categorization, and the development of conversational chatbots that mimic human interaction. Built on a decoder-only transformer architecture, Yi-Large incorporates advanced features like pre-normalization and Group Query Attention, and it has been trained on an extensive, high-quality multilingual dataset to enhance its performance. The model's flexibility and economical pricing position it as a formidable player in the artificial intelligence landscape, especially for businesses looking to implement AI technologies on a global scale. Additionally, its ability to adapt to a wide range of use cases underscores its potential to revolutionize how organizations leverage language models for various needs.
  • 28
    LUIS Reviews
    Language Understanding (LUIS) is an advanced machine learning service designed to incorporate natural language capabilities into applications, bots, and IoT devices. It allows for the rapid creation of tailored models that enhance over time, enabling the integration of natural language features into your applications. LUIS excels at discerning important information within dialogues by recognizing user intentions (intents) and extracting significant details from phrases (entities), all contributing to a sophisticated language understanding model. It works harmoniously with the Azure Bot Service, simplifying the process of developing a highly functional bot. With robust developer resources and customizable pre-existing applications alongside entity dictionaries such as Calendar, Music, and Devices, users can swiftly construct and implement solutions. These dictionaries are enriched by extensive web knowledge, offering billions of entries that aid in accurately identifying key insights from user interactions. Continuous improvement is achieved through active learning, which ensures that the quality of models keeps getting better over time, making LUIS an invaluable tool for modern application development. Ultimately, this service empowers developers to create rich, responsive experiences that enhance user engagement.
  • 29
    Falcon 3 Reviews

    Falcon 3

    Technology Innovation Institute (TII)

    Free
    Falcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available.
  • 30
    CodeGemma Reviews
    CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere.
  • 31
    Claude Sonnet 3.7 Reviews
    Claude Sonnet 3.7, a state-of-the-art AI model by Anthropic, is designed for versatility, offering users the option to switch between quick, efficient responses and deeper, more reflective answers. This dynamic model shines in complex problem-solving scenarios, where high-level reasoning and nuanced understanding are crucial. By allowing Claude to pause for self-reflection before answering, Sonnet 3.7 excels in tasks that demand deep analysis, such as coding, natural language processing, and critical thinking applications. Its flexibility makes it an invaluable tool for professionals and organizations looking for an adaptable AI that delivers both speed and thoughtful insights.
  • 32
    Phi-3 Reviews
    Introducing a remarkable family of compact language models (SLMs) that deliver exceptional performance while being cost-effective and low in latency. These models are designed to enhance AI functionalities, decrease resource consumption, and promote budget-friendly generative AI applications across various platforms. They improve response times in real-time interactions, navigate autonomous systems, and support applications that demand low latency, all critical to user experience. Phi-3 can be deployed in cloud environments, edge computing, or directly on devices, offering unparalleled flexibility for deployment and operations. Developed in alignment with Microsoft AI principles—such as accountability, transparency, fairness, reliability, safety, privacy, security, and inclusiveness—these models ensure ethical AI usage. They also excel in offline environments where data privacy is essential or where internet connectivity is sparse. With an expanded context window, Phi-3 generates outputs that are more coherent, accurate, and contextually relevant, making it an ideal choice for various applications. Ultimately, deploying at the edge not only enhances speed but also ensures that users receive timely and effective responses.
  • 33
    ERNIE Bot Reviews
    Baidu has developed ERNIE Bot, an AI-driven conversational assistant that aims to create smooth and natural interactions with users. Leveraging the ERNIE (Enhanced Representation through Knowledge Integration) framework, ERNIE Bot is adept at comprehending intricate queries and delivering human-like responses across diverse subjects. Its functionalities encompass text processing, image generation, and multimodal communication, allowing it to be applicable in various fields, including customer service, virtual assistance, and business automation. Thanks to its sophisticated understanding of context, ERNIE Bot provides an effective solution for organizations looking to improve their digital communication and streamline operations. Furthermore, the bot's versatility makes it a valuable tool for enhancing user engagement and operational efficiency.
  • 34
    Qwen2-VL Reviews
    Qwen2-VL represents the most advanced iteration of vision-language models within the Qwen family, building upon the foundation established by Qwen-VL. This enhanced model showcases remarkable capabilities, including: Achieving cutting-edge performance in interpreting images of diverse resolutions and aspect ratios, with Qwen2-VL excelling in visual comprehension tasks such as MathVista, DocVQA, RealWorldQA, and MTVQA, among others. Processing videos exceeding 20 minutes in length, enabling high-quality video question answering, engaging dialogues, and content creation. Functioning as an intelligent agent capable of managing devices like smartphones and robots, Qwen2-VL utilizes its sophisticated reasoning and decision-making skills to perform automated tasks based on visual cues and textual commands. Providing multilingual support to accommodate a global audience, Qwen2-VL can now interpret text in multiple languages found within images, extending its usability and accessibility to users from various linguistic backgrounds. This wide-ranging capability positions Qwen2-VL as a versatile tool for numerous applications across different fields.
  • 35
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 36
    ERNIE 3.0 Titan Reviews
    Pre-trained language models have made significant strides, achieving top-tier performance across multiple Natural Language Processing (NLP) applications. The impressive capabilities of GPT-3 highlight how increasing the scale of these models can unlock their vast potential. Recently, a comprehensive framework known as ERNIE 3.0 was introduced to pre-train large-scale models enriched with knowledge, culminating in a model boasting 10 billion parameters. This iteration of ERNIE 3.0 has surpassed the performance of existing leading models in a variety of NLP tasks. To further assess the effects of scaling, we have developed an even larger model called ERNIE 3.0 Titan, which consists of up to 260 billion parameters and is built on the PaddlePaddle platform. Additionally, we have implemented a self-supervised adversarial loss alongside a controllable language modeling loss, enabling ERNIE 3.0 Titan to produce texts that are both reliable and modifiable, thus pushing the boundaries of what these models can achieve. This approach not only enhances the model's capabilities but also opens new avenues for research in text generation and control.
  • 37
    OpenELM Reviews
    OpenELM is a family of open-source language models created by Apple. By employing a layer-wise scaling approach, it effectively distributes parameters across the transformer model's layers, resulting in improved accuracy when compared to other open language models of a similar scale. This model is trained using datasets that are publicly accessible and is noted for achieving top-notch performance relative to its size. Furthermore, OpenELM represents a significant advancement in the pursuit of high-performing language models in the open-source community.
  • 38
    XLNet Reviews
    XLNet introduces an innovative approach to unsupervised language representation learning by utilizing a unique generalized permutation language modeling objective. Furthermore, it leverages the Transformer-XL architecture, which proves to be highly effective in handling language tasks that require processing of extended contexts. As a result, XLNet sets new benchmarks with its state-of-the-art (SOTA) performance across multiple downstream language applications, such as question answering, natural language inference, sentiment analysis, and document ranking. This makes XLNet a significant advancement in the field of natural language processing.
  • 39
    Gemini Flash Reviews
    Gemini Flash represents a cutting-edge large language model developed by Google, specifically engineered for rapid, efficient language processing activities. As a part of the Gemini lineup from Google DeepMind, it is designed to deliver instantaneous responses and effectively manage extensive applications, proving to be exceptionally suited for dynamic AI-driven interactions like customer service, virtual assistants, and real-time chat systems. In addition to its impressive speed, Gemini Flash maintains a high standard of quality; it utilizes advanced neural architectures that guarantee responses are contextually appropriate, coherent, and accurate. Google has also integrated stringent ethical guidelines and responsible AI methodologies into Gemini Flash, providing it with safeguards to address and reduce biased outputs, thereby ensuring compliance with Google’s principles for secure and inclusive AI. With the capabilities of Gemini Flash, businesses and developers are empowered to implement agile, intelligent language solutions that can satisfy the requirements of rapidly evolving environments. This innovative model marks a significant step forward in the quest for sophisticated AI technologies that respect ethical considerations while enhancing user experience.
  • 40
    Phi-4-mini-reasoning Reviews
    Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.
  • 41
    Mixtral 8x22B Reviews
    The Mixtral 8x22B represents our newest open model, establishing a new benchmark for both performance and efficiency in the AI sector. This sparse Mixture-of-Experts (SMoE) model activates only 39B parameters from a total of 141B, ensuring exceptional cost efficiency relative to its scale. Additionally, it demonstrates fluency in multiple languages, including English, French, Italian, German, and Spanish, while also possessing robust skills in mathematics and coding. With its native function calling capability, combined with the constrained output mode utilized on la Plateforme, it facilitates the development of applications and the modernization of technology stacks on a large scale. The model's context window can handle up to 64K tokens, enabling accurate information retrieval from extensive documents. We prioritize creating models that maximize cost efficiency for their sizes, thereby offering superior performance-to-cost ratios compared to others in the community. The Mixtral 8x22B serves as a seamless extension of our open model lineage, and its sparse activation patterns contribute to its speed, making it quicker than any comparable dense 70B model on the market. Furthermore, its innovative design positions it as a leading choice for developers seeking high-performance solutions.
  • 42
    Code Llama Reviews
    Code Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively.
  • 43
    Aya Reviews
    Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape.
  • 44
    Solar Pro 2 Reviews

    Solar Pro 2

    Upstage AI

    $0.1 per 1M tokens
    Upstage has unveiled Solar Pro 2, a cutting-edge large language model designed for frontier-scale applications, capable of managing intricate tasks and workflows in various sectors including finance, healthcare, and law. This model is built on a streamlined architecture with 31 billion parameters, ensuring exceptional multilingual capabilities, particularly in Korean, where it surpasses even larger models on key benchmarks such as Ko-MMLU, Hae-Rae, and Ko-IFEval, while maintaining strong performance in English and Japanese as well. In addition to its advanced language comprehension and generation abilities, Solar Pro 2 incorporates a sophisticated Reasoning Mode that significantly enhances the accuracy of multi-step tasks across a wide array of challenges, from general reasoning assessments (MMLU, MMLU-Pro, HumanEval) to intricate mathematics problems (Math500, AIME) and software engineering tasks (SWE-Bench Agentless), achieving problem-solving efficiency that rivals or even surpasses that of models with double the parameters. Furthermore, its enhanced tool-use capabilities allow the model to effectively engage with external APIs and data, broadening its applicability in real-world scenarios. This innovative design not only demonstrates exceptional versatility but also positions Solar Pro 2 as a formidable player in the evolving landscape of AI technologies.
  • 45
    GPT-3.5 Reviews

    GPT-3.5

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    The GPT-3.5 series represents an advancement in OpenAI's large language models, building on the capabilities of its predecessor, GPT-3. These models excel at comprehending and producing human-like text, with four primary variations designed for various applications. The core GPT-3.5 models are intended to be utilized through the text completion endpoint, while additional models are optimized for different endpoint functionalities. Among these, the Davinci model family stands out as the most powerful, capable of executing any task that the other models can handle, often requiring less detailed input. For tasks that demand a deep understanding of context, such as tailoring summaries for specific audiences or generating creative content, the Davinci model tends to yield superior outcomes. However, this enhanced capability comes at a cost, as Davinci requires more computing resources, making it pricier for API usage and slower compared to its counterparts. Overall, the advancements in GPT-3.5 not only improve performance but also expand the range of potential applications.