LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
TruLens
TruLens is a versatile open-source Python library aimed at the systematic evaluation and monitoring of Large Language Model (LLM) applications. It features detailed instrumentation, feedback mechanisms, and an intuitive interface that allows developers to compare and refine various versions of their applications, thereby promoting swift enhancements in LLM-driven projects. The library includes programmatic tools that evaluate the quality of inputs, outputs, and intermediate results, enabling efficient and scalable assessments. With its precise, stack-agnostic instrumentation and thorough evaluations, TruLens assists in pinpointing failure modes while fostering systematic improvements in applications. Developers benefit from an accessible interface that aids in comparing different application versions, supporting informed decision-making and optimization strategies. TruLens caters to a wide range of applications, including but not limited to question-answering, summarization, retrieval-augmented generation, and agent-based systems, making it a valuable asset for diverse development needs. As developers leverage TruLens, they can expect to achieve more reliable and effective LLM applications.
Learn more
Grounded Language Model (GLM)
Contextual AI has unveiled its Grounded Language Model (GLM), which is meticulously crafted to reduce inaccuracies and provide highly reliable, source-based replies for retrieval-augmented generation (RAG) as well as agentic applications. This advanced model emphasizes fidelity to the information provided, ensuring that responses are firmly anchored in specific knowledge sources and are accompanied by inline citations. Achieving top-tier results on the FACTS groundedness benchmark, the GLM demonstrates superior performance compared to other foundational models in situations that demand exceptional accuracy and dependability. Tailored for enterprise applications such as customer service, finance, and engineering, the GLM plays a crucial role in delivering trustworthy and exact responses, which are essential for mitigating risks and enhancing decision-making processes. Furthermore, its design reflects a commitment to meeting the rigorous demands of industries where information integrity is paramount.
Learn more