Best Reka Alternatives in 2025
Find the top alternatives to Reka currently available. Compare ratings, reviews, pricing, and features of Reka alternatives in 2025. Slashdot lists the best Reka alternatives on the market that offer competing products that are similar to Reka. Sort through Reka alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
713 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Amazon Bedrock
Amazon
72 RatingsAmazon Bedrock is a comprehensive service that streamlines the development and expansion of generative AI applications by offering access to a diverse range of high-performance foundation models (FMs) from top AI organizations, including AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon. Utilizing a unified API, developers have the opportunity to explore these models, personalize them through methods such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that can engage with various enterprise systems and data sources. As a serverless solution, Amazon Bedrock removes the complexities associated with infrastructure management, enabling the effortless incorporation of generative AI functionalities into applications while prioritizing security, privacy, and ethical AI practices. This service empowers developers to innovate rapidly, ultimately enhancing the capabilities of their applications and fostering a more dynamic tech ecosystem. -
3
AI21 Studio
AI21 Studio
$29 per monthAI21 Studio offers API access to its Jurassic-1 large language models, which enable robust text generation and understanding across numerous live applications. Tackle any language-related challenge with ease, as our Jurassic-1 models are designed to understand natural language instructions and can quickly adapt to new tasks with minimal examples. Leverage our targeted APIs for essential functions such as summarizing and paraphrasing, allowing you to achieve high-quality outcomes at a competitive price without starting from scratch. If you need to customize a model, fine-tuning is just three clicks away, with training that is both rapid and cost-effective, ensuring that your models are deployed without delay. Enhance your applications by integrating an AI co-writer to provide your users with exceptional capabilities. Boost user engagement and success with features that include long-form draft creation, paraphrasing, content repurposing, and personalized auto-completion options, ultimately enriching the overall user experience. Your application can become a powerful tool in the hands of every user. -
4
Mistral AI
Mistral AI
Free 1 RatingMistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry. -
5
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
6
Azure OpenAI Service
Microsoft
$0.0004 per 1000 tokensUtilize sophisticated coding and language models across a diverse range of applications. Harness the power of expansive generative AI models that possess an intricate grasp of both language and code, paving the way for enhanced reasoning and comprehension skills essential for developing innovative applications. These advanced models can be applied to multiple scenarios, including writing support, automatic code creation, and data reasoning. Moreover, ensure responsible AI practices by implementing measures to detect and mitigate potential misuse, all while benefiting from enterprise-level security features offered by Azure. With access to generative models pretrained on vast datasets comprising trillions of words, you can explore new possibilities in language processing, code analysis, reasoning, inferencing, and comprehension. Further personalize these generative models by using labeled datasets tailored to your unique needs through an easy-to-use REST API. Additionally, you can optimize your model's performance by fine-tuning hyperparameters for improved output accuracy. The few-shot learning functionality allows you to provide sample inputs to the API, resulting in more pertinent and context-aware outcomes. This flexibility enhances your ability to meet specific application demands effectively. -
7
Qwen LLM represents a collection of advanced large language models created by Alibaba Cloud's Damo Academy. These models leverage an extensive dataset comprising text and code, enabling them to produce human-like text, facilitate language translation, craft various forms of creative content, and provide informative answers to queries. Key attributes of Qwen LLMs include: A range of sizes: The Qwen series features models with parameters varying from 1.8 billion to 72 billion, catering to diverse performance requirements and applications. Open source availability: Certain versions of Qwen are open-source, allowing users to access and modify the underlying code as needed. Multilingual capabilities: Qwen is equipped to comprehend and translate several languages, including English, Chinese, and French. Versatile functionalities: In addition to language generation and translation, Qwen models excel in tasks such as answering questions, summarizing texts, and generating code, making them highly adaptable tools for various applications. Overall, the Qwen LLM family stands out for its extensive capabilities and flexibility in meeting user needs.
-
8
Gemini, an innovative AI chatbot from Google, aims to boost creativity and productivity through engaging conversations in natural language. Available on both web and mobile platforms, it works harmoniously with multiple Google services like Docs, Drive, and Gmail, allowing users to create content, condense information, and handle tasks effectively. With its multimodal abilities, Gemini can analyze and produce various forms of data, including text, images, and audio, which enables it to deliver thorough support in numerous scenarios. As it continually learns from user engagement, Gemini customizes its responses to provide personalized and context-sensitive assistance, catering to diverse user requirements. Moreover, this adaptability ensures that it evolves alongside its users, making it a valuable tool for anyone looking to enhance their workflow and creativity.
-
9
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
10
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
11
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
12
Upstage AI
Upstage.ai
$0.5 per 1M tokensUpstage AI specializes in developing cutting-edge large language models and document processing tools that streamline workflows in mission-critical industries such as insurance, healthcare, and finance. Their flagship product, Solar Pro 2, offers enterprise-grade speed and reliability, optimized for handling complex language tasks with grounded, accurate outputs. Upstage’s Document Parse converts PDFs, scans, and emails into clean, machine-readable data, while Information Extract pulls structured key-value pairs from invoices, claims, and contracts with audited precision. These AI-driven solutions automate time-consuming tasks like claims adjudication, policy management, and clinical documentation review, enabling faster and more informed decision-making. The company provides flexible deployment methods, including SaaS, private cloud, and on-premises installations, ensuring data sovereignty and compliance. Upstage’s AI technology has earned recognition such as the CB Insights AI 100 listing and the top spot on the Open LLM Leaderboard. Leading companies rely on Upstage to unlock hidden insights in complex documents, saving hours of manual review. Its high accuracy OCR and GenAI capabilities continue to push the boundaries of enterprise AI. -
13
Stable Beluga
Stability AI
FreeStability AI, along with its CarperAI lab, is excited to unveil Stable Beluga 1 and its advanced successor, Stable Beluga 2, previously known as FreeWilly, both of which are robust new Large Language Models (LLMs) available for public use. These models exhibit remarkable reasoning capabilities across a wide range of benchmarks, showcasing their versatility and strength. Stable Beluga 1 is built on the original LLaMA 65B foundation model and has undergone meticulous fine-tuning with a novel synthetically-generated dataset utilizing Supervised Fine-Tune (SFT) in the conventional Alpaca format. In a similar vein, Stable Beluga 2 utilizes the LLaMA 2 70B foundation model, pushing the boundaries of performance in the industry. Their development marks a significant step forward in the evolution of open access AI technologies. -
14
Hermes 3
Nous Research
FreePush the limits of individual alignment, artificial consciousness, open-source software, and decentralization through experimentation that larger corporations and governments often shy away from. Hermes 3 features sophisticated long-term context retention, the ability to engage in multi-turn conversations, and intricate roleplaying and internal monologue capabilities, alongside improved functionality for agentic function-calling. The design of this model emphasizes precise adherence to system prompts and instruction sets in a flexible way. By fine-tuning Llama 3.1 across various scales, including 8B, 70B, and 405B, and utilizing a dataset largely composed of synthetically generated inputs, Hermes 3 showcases performance that rivals and even surpasses Llama 3.1, while also unlocking greater potential in reasoning and creative tasks. This series of instructive and tool-utilizing models exhibits exceptional reasoning and imaginative skills, paving the way for innovative applications. Ultimately, Hermes 3 represents a significant advancement in the landscape of AI development. -
15
ChatGLM
Zhipu AI
FreeChatGLM-6B is a bilingual dialogue model that supports both Chinese and English, built on the General Language Model (GLM) framework and features 6.2 billion parameters. Thanks to model quantization techniques, it can be easily run on standard consumer graphics cards, requiring only 6GB of video memory at the INT4 quantization level. This model employs methodologies akin to those found in ChatGPT but is specifically tailored to enhance Chinese question-and-answer interactions and dialogue. Following extensive training with approximately 1 trillion identifiers in both languages, along with additional supervision, fine-tuning, self-assistance through feedback, and reinforcement learning from human input, ChatGLM-6B has demonstrated an impressive capability to produce responses that resonate well with human users. Its adaptability and performance make it a valuable tool for bilingual communication. -
16
Open R1
Open R1
FreeOpen R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence. -
17
Palmyra LLM
Writer
$18 per monthPalmyra represents a collection of Large Language Models (LLMs) specifically designed to deliver accurate and reliable outcomes in business settings. These models shine in various applications, including answering questions, analyzing images, and supporting more than 30 languages, with options for fine-tuning tailored to sectors such as healthcare and finance. Remarkably, the Palmyra models have secured top positions in notable benchmarks such as Stanford HELM and PubMedQA, with Palmyra-Fin being the first to successfully clear the CFA Level III examination. Writer emphasizes data security by refraining from utilizing client data for training or model adjustments, adhering to a strict zero data retention policy. The Palmyra suite features specialized models, including Palmyra X 004, which boasts tool-calling functionalities; Palmyra Med, created specifically for the healthcare industry; Palmyra Fin, focused on financial applications; and Palmyra Vision, which delivers sophisticated image and video processing capabilities. These advanced models are accessible via Writer's comprehensive generative AI platform, which incorporates graph-based Retrieval Augmented Generation (RAG) for enhanced functionality. With continual advancements and improvements, Palmyra aims to redefine the landscape of enterprise-level AI solutions. -
18
Llama 3.3
Meta
FreeThe newest version in the Llama series, Llama 3.3, represents a significant advancement in language models aimed at enhancing AI's capabilities in understanding and communication. It boasts improved contextual reasoning, superior language generation, and advanced fine-tuning features aimed at producing exceptionally accurate, human-like responses across a variety of uses. This iteration incorporates a more extensive training dataset, refined algorithms for deeper comprehension, and mitigated biases compared to earlier versions. Llama 3.3 stands out in applications including natural language understanding, creative writing, technical explanations, and multilingual interactions, making it a crucial asset for businesses, developers, and researchers alike. Additionally, its modular architecture facilitates customizable deployment in specific fields, ensuring it remains versatile and high-performing even in large-scale applications. With these enhancements, Llama 3.3 is poised to redefine the standards of AI language models. -
19
PygmalionAI
PygmalionAI
FreePygmalionAI is a vibrant community focused on the development of open-source initiatives utilizing EleutherAI's GPT-J 6B and Meta's LLaMA models. Essentially, Pygmalion specializes in crafting AI tailored for engaging conversations and roleplaying. The actively maintained Pygmalion AI model currently features the 7B variant, derived from Meta AI's LLaMA model. Requiring a mere 18GB (or even less) of VRAM, Pygmalion demonstrates superior chat functionality compared to significantly larger language models, all while utilizing relatively limited resources. Our meticulously assembled dataset, rich in high-quality roleplaying content, guarantees that your AI companion will be the perfect partner for roleplaying scenarios. Both the model weights and the training code are entirely open-source, allowing you the freedom to modify and redistribute them for any purpose you desire. Generally, language models, such as Pygmalion, operate on GPUs, as they require swift memory access and substantial processing power to generate coherent text efficiently. As a result, users can expect a smooth and responsive interaction experience when employing Pygmalion's capabilities. -
20
Aya
Cohere AI
Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape. -
21
Claude represents a sophisticated artificial intelligence language model capable of understanding and producing text that resembles human communication. Anthropic is an organization dedicated to AI safety and research, aiming to develop AI systems that are not only dependable and understandable but also controllable. While contemporary large-scale AI systems offer considerable advantages, they also present challenges such as unpredictability and lack of transparency; thus, our mission is to address these concerns. Currently, our primary emphasis lies in advancing research to tackle these issues effectively; however, we anticipate numerous opportunities in the future where our efforts could yield both commercial value and societal benefits. As we continue our journey, we remain committed to enhancing the safety and usability of AI technologies.
-
22
Cohere is a robust enterprise AI platform that empowers developers and organizations to create advanced applications leveraging language technologies. With a focus on large language models (LLMs), Cohere offers innovative solutions for tasks such as text generation, summarization, and semantic search capabilities. The platform features the Command family designed for superior performance in language tasks, alongside Aya Expanse, which supports multilingual functionalities across 23 different languages. Emphasizing security and adaptability, Cohere facilitates deployment options that span major cloud providers, private cloud infrastructures, or on-premises configurations to cater to a wide array of enterprise requirements. The company partners with influential industry players like Oracle and Salesforce, striving to weave generative AI into business applications, thus enhancing automation processes and customer interactions. Furthermore, Cohere For AI, its dedicated research lab, is committed to pushing the boundaries of machine learning via open-source initiatives and fostering a collaborative global research ecosystem. This commitment to innovation not only strengthens their technology but also contributes to the broader AI landscape.
-
23
Yi-Lightning
Yi-Lightning
Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field. -
24
DeepSeek-V3
DeepSeek
Free 1 RatingDeepSeek-V3 represents a groundbreaking advancement in artificial intelligence, specifically engineered to excel in natural language comprehension, sophisticated reasoning, and decision-making processes. By utilizing highly advanced neural network designs, this model incorporates vast amounts of data alongside refined algorithms to address intricate problems across a wide array of fields, including research, development, business analytics, and automation. Prioritizing both scalability and operational efficiency, DeepSeek-V3 equips developers and organizations with innovative resources that can significantly expedite progress and lead to transformative results. Furthermore, its versatility makes it suitable for various applications, enhancing its value across industries. -
25
OpenEuroLLM
OpenEuroLLM
OpenEuroLLM represents a collaborative effort between prominent AI firms and research organizations across Europe, aimed at creating a suite of open-source foundational models to promote transparency in artificial intelligence within the continent. This initiative prioritizes openness by making data, documentation, training and testing code, and evaluation metrics readily available, thereby encouraging community participation. It is designed to comply with European Union regulations, with the goal of delivering efficient large language models that meet the specific standards of Europe. A significant aspect of the project is its commitment to linguistic and cultural diversity, ensuring that multilingual capabilities cover all official EU languages and potentially more. The initiative aspires to broaden access to foundational models that can be fine-tuned for a range of applications, enhance evaluation outcomes across different languages, and boost the availability of training datasets and benchmarks for researchers and developers alike. By sharing tools, methodologies, and intermediate results, transparency is upheld during the entire training process, fostering trust and collaboration within the AI community. Ultimately, OpenEuroLLM aims to pave the way for more inclusive and adaptable AI solutions that reflect the rich diversity of European languages and cultures. -
26
Amazon Titan
Amazon
Amazon Titan consists of a collection of sophisticated foundation models from AWS, aimed at boosting generative AI applications with exceptional performance and adaptability. Leveraging AWS's extensive expertise in AI and machine learning developed over 25 years, Titan models cater to various applications, including text generation, summarization, semantic search, and image creation. These models prioritize responsible AI practices by integrating safety features and fine-tuning options. Additionally, they allow for customization using your data through Retrieval Augmented Generation (RAG), which enhances accuracy and relevance, thus making them suitable for a wide array of both general and specialized AI tasks. With their innovative design and robust capabilities, Titan models represent a significant advancement in the field of artificial intelligence. -
27
Defense Llama
Scale AI
Scale AI is excited to introduce Defense Llama, a specialized Large Language Model (LLM) developed from Meta’s Llama 3, tailored specifically to enhance American national security initiatives. Designed for exclusive use within controlled U.S. government settings through Scale Donovan, Defense Llama equips our military personnel and national security experts with the generative AI tools needed for various applications, including the planning of military operations and the analysis of adversary weaknesses. With its training grounded in a comprehensive array of materials, including military doctrines and international humanitarian laws, Defense Llama adheres to the Department of Defense (DoD) guidelines on armed conflict and aligns with the DoD’s Ethical Principles for Artificial Intelligence. This structured foundation allows the model to deliver precise, relevant, and insightful responses tailored to the needs of its users. By providing a secure and efficient generative AI platform, Scale is committed to enhancing the capabilities of U.S. defense personnel in their critical missions. The integration of such technology marks a significant advancement in how national security objectives can be achieved. -
28
Orpheus TTS
Canopy Labs
Canopy Labs has unveiled Orpheus, an innovative suite of advanced speech large language models (LLMs) aimed at achieving human-like speech generation capabilities. Utilizing the Llama-3 architecture, these models have been trained on an extensive dataset comprising over 100,000 hours of English speech, allowing them to generate speech that exhibits natural intonation, emotional depth, and rhythmic flow that outperforms existing high-end closed-source alternatives. Orpheus also features zero-shot voice cloning, enabling users to mimic voices without any need for prior fine-tuning, and provides easy-to-use tags for controlling emotion and intonation. The models are engineered for low latency, achieving approximately 200ms streaming latency for real-time usage, which can be further decreased to around 100ms when utilizing input streaming. Canopy Labs has made available both pre-trained and fine-tuned models with 3 billion parameters under the flexible Apache 2.0 license, with future intentions to offer smaller models with 1 billion, 400 million, and 150 million parameters to cater to devices with limited resources. This strategic move is expected to broaden accessibility and application potential across various platforms and use cases. -
29
Gemini 1.5 Pro
Google
1 RatingThe Gemini 1.5 Pro AI model represents a pinnacle in language modeling, engineered to produce remarkably precise, context-sensitive, and human-like replies suitable for a wide range of uses. Its innovative neural framework allows it to excel in tasks involving natural language comprehension, generation, and reasoning. This model has been meticulously fine-tuned for adaptability, making it capable of handling diverse activities such as content creation, coding, data analysis, and intricate problem-solving. Its sophisticated algorithms provide a deep understanding of language, allowing for smooth adjustments to various domains and conversational tones. Prioritizing both scalability and efficiency, the Gemini 1.5 Pro is designed to cater to both small applications and large-scale enterprise deployments, establishing itself as an invaluable asset for driving productivity and fostering innovation. Moreover, its ability to learn from user interactions enhances its performance, making it even more effective in real-world scenarios. -
30
Dolly
Databricks
FreeDolly is an economical large language model that surprisingly demonstrates a notable level of instruction-following abilities similar to those seen in ChatGPT. While the Alpaca team's research revealed that cutting-edge models could be encouraged to excel in high-quality instruction adherence, our findings indicate that even older open-source models with earlier architectures can display remarkable behaviors when fine-tuned on a modest set of instructional training data. By utilizing an existing open-source model with 6 billion parameters from EleutherAI, Dolly has been slightly adjusted to enhance its ability to follow instructions, showcasing skills like brainstorming and generating text that were absent in its original form. This approach not only highlights the potential of older models but also opens new avenues for leveraging existing technologies in innovative ways. -
31
Snowflake Cortex AI
Snowflake
$2 per monthSnowflake Cortex AI is a serverless, fully managed platform designed for organizations to leverage unstructured data and develop generative AI applications within the Snowflake framework. This innovative platform provides access to top-tier large language models (LLMs) such as Meta's Llama 3 and 4, Mistral, and Reka-Core, making it easier to perform various tasks, including text summarization, sentiment analysis, translation, and answering questions. Additionally, Cortex AI features Retrieval-Augmented Generation (RAG) and text-to-SQL capabilities, enabling users to efficiently query both structured and unstructured data. Among its key offerings are Cortex Analyst, which allows business users to engage with data through natural language; Cortex Search, a versatile hybrid search engine that combines vector and keyword search for document retrieval; and Cortex Fine-Tuning, which provides the ability to tailor LLMs to meet specific application needs. Furthermore, this platform empowers organizations to harness the power of AI while simplifying complex data interactions. -
32
LLaVA
LLaVA
FreeLLaVA, or Large Language-and-Vision Assistant, represents a groundbreaking multimodal model that combines a vision encoder with the Vicuna language model, enabling enhanced understanding of both visual and textual information. By employing end-to-end training, LLaVA showcases remarkable conversational abilities, mirroring the multimodal features found in models such as GPT-4. Significantly, LLaVA-1.5 has reached cutting-edge performance on 11 different benchmarks, leveraging publicly accessible data and achieving completion of its training in about one day on a single 8-A100 node, outperforming approaches that depend on massive datasets. The model's development included the construction of a multimodal instruction-following dataset, which was produced using a language-only variant of GPT-4. This dataset consists of 158,000 distinct language-image instruction-following examples, featuring dialogues, intricate descriptions, and advanced reasoning challenges. Such a comprehensive dataset has played a crucial role in equipping LLaVA to handle a diverse range of tasks related to vision and language with great efficiency. In essence, LLaVA not only enhances the interaction between visual and textual modalities but also sets a new benchmark in the field of multimodal AI. -
33
Ferret
Apple
FreeAn advanced End-to-End MLLM is designed to accept various forms of references and effectively ground responses. The Ferret Model utilizes a combination of Hybrid Region Representation and a Spatial-aware Visual Sampler, which allows for detailed and flexible referring and grounding capabilities within the MLLM framework. The GRIT Dataset, comprising approximately 1.1 million entries, serves as a large-scale and hierarchical dataset specifically crafted for robust instruction tuning in the ground-and-refer category. Additionally, the Ferret-Bench is a comprehensive multimodal evaluation benchmark that simultaneously assesses referring, grounding, semantics, knowledge, and reasoning, ensuring a well-rounded evaluation of the model's capabilities. This intricate setup aims to enhance the interaction between language and visual data, paving the way for more intuitive AI systems. -
34
ALBERT
Google
ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks. -
35
Amazon Nova Lite
Amazon
Amazon Nova Lite is a versatile AI model that supports multimodal inputs, including text, image, and video, and provides lightning-fast processing. It offers a great balance of speed, accuracy, and affordability, making it ideal for applications that need high throughput, such as customer engagement and content creation. With support for fine-tuning and real-time responsiveness, Nova Lite delivers high-quality outputs with minimal latency, empowering businesses to innovate at scale. -
36
Qwen2.5-Max
Alibaba
FreeQwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology. -
37
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models like GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have seen significant advancements in their capabilities, leading to a rise in their usage among individuals in both personal and professional contexts. Despite their growing popularity and integration into daily tasks, these models are not without their shortcomings, as they can sometimes disseminate inaccurate information, reinforce harmful stereotypes, and use inappropriate language. To effectively tackle these critical issues, it is essential for researchers and scholars to become actively involved in exploring these models further. However, conducting research on instruction-following models within academic settings has posed challenges due to the unavailability of models with comparable functionality to proprietary options like OpenAI’s text-DaVinci-003. In response to this gap, we are presenting our insights on an instruction-following language model named Alpaca, which has been fine-tuned from Meta’s LLaMA 7B model, aiming to contribute to the discourse and development in this field. This initiative represents a step towards enhancing the understanding and capabilities of instruction-following models in a more accessible manner for researchers. -
38
Tune AI
NimbleBox
Harness the capabilities of tailored models to gain a strategic edge in your market. With our advanced enterprise Gen AI framework, you can surpass conventional limits and delegate repetitive tasks to robust assistants in real time – the possibilities are endless. For businesses that prioritize data protection, customize and implement generative AI solutions within your own secure cloud environment, ensuring safety and confidentiality at every step. -
39
Code Llama
Meta
FreeCode Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively. -
40
Llama 3.1
Meta
FreeIntroducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective. -
41
Giga ML
Giga ML
We are excited to announce the launch of our X1 large series of models. The most robust model from Giga ML is now accessible for both pre-training and fine-tuning in an on-premises environment. Thanks to our compatibility with Open AI, existing integrations with tools like long chain, llama-index, and others function effortlessly. You can also proceed with pre-training LLMs using specialized data sources such as industry-specific documents or company files. The landscape of large language models (LLMs) is rapidly evolving, creating incredible opportunities for advancements in natural language processing across multiple fields. Despite this growth, several significant challenges persist in the industry. At Giga ML, we are thrilled to introduce the X1 Large 32k model, an innovative on-premise LLM solution designed specifically to tackle these pressing challenges, ensuring that organizations can harness the full potential of LLMs effectively. With this launch, we aim to empower businesses to elevate their language processing capabilities. -
42
Octave TTS
Hume AI
$3 per monthHume AI has unveiled Octave, an innovative text-to-speech platform that utilizes advanced language model technology to deeply understand and interpret word context, allowing it to produce speech infused with the right emotions, rhythm, and cadence. Unlike conventional TTS systems that simply vocalize text, Octave mimics the performance of a human actor, delivering lines with rich expression tailored to the content being spoken. Users are empowered to create a variety of unique AI voices by submitting descriptive prompts, such as "a skeptical medieval peasant," facilitating personalized voice generation that reflects distinct character traits or situational contexts. Moreover, Octave supports the adjustment of emotional tone and speaking style through straightforward natural language commands, enabling users to request changes like "speak with more enthusiasm" or "whisper in fear" for precise output customization. This level of interactivity enhances user experience by allowing for a more engaging and immersive auditory experience. -
43
GPT4All
Nomic AI
FreeGPT4All represents a comprehensive framework designed for the training and deployment of advanced, tailored large language models that can operate efficiently on standard consumer-grade CPUs. Its primary objective is straightforward: to establish itself as the leading instruction-tuned assistant language model that individuals and businesses can access, share, and develop upon without restrictions. Each GPT4All model ranges between 3GB and 8GB in size, making it easy for users to download and integrate into the GPT4All open-source software ecosystem. Nomic AI plays a crucial role in maintaining and supporting this ecosystem, ensuring both quality and security while promoting the accessibility for anyone, whether individuals or enterprises, to train and deploy their own edge-based language models. The significance of data cannot be overstated, as it is a vital component in constructing a robust, general-purpose large language model. To facilitate this, the GPT4All community has established an open-source data lake, which serves as a collaborative platform for contributing valuable instruction and assistant tuning data, thereby enhancing future training efforts for models within the GPT4All framework. This initiative not only fosters innovation but also empowers users to engage actively in the development process. -
44
Phi-2
Microsoft
We are excited to announce the launch of Phi-2, a language model featuring 2.7 billion parameters that excels in reasoning and language comprehension, achieving top-tier results compared to other base models with fewer than 13 billion parameters. In challenging benchmarks, Phi-2 competes with and often surpasses models that are up to 25 times its size, a feat made possible by advancements in model scaling and meticulous curation of training data. Due to its efficient design, Phi-2 serves as an excellent resource for researchers interested in areas such as mechanistic interpretability, enhancing safety measures, or conducting fine-tuning experiments across a broad spectrum of tasks. To promote further exploration and innovation in language modeling, Phi-2 has been integrated into the Azure AI Studio model catalog, encouraging collaboration and development within the research community. Researchers can leverage this model to unlock new insights and push the boundaries of language technology. -
45
Ntropy
Ntropy
Accelerate your shipping process by integrating seamlessly with our Python SDK or REST API in just a matter of minutes, without the need for any prior configurations or data formatting. You can hit the ground running as soon as you start receiving data and onboarding your initial customers. Our custom language models are meticulously designed to identify entities, perform real-time web crawling, and deliver optimal matches while assigning labels with remarkable accuracy, all in a significantly reduced timeframe. While many data enrichment models focus narrowly on specific markets—whether in the US or Europe, business or consumer—they often struggle to generalize and achieve results at a level comparable to human performance. In contrast, our solution allows you to harness the capabilities of the most extensive and efficient models globally, integrating them into your products with minimal investment of both time and resources. This ensures that you can not only keep pace but excel in today’s data-driven landscape.