What Integrates with Preset?
Find out what Preset integrations exist in 2025. Learn what software and services currently integrate with Preset, and sort them by reviews, cost, features, and more. Below is a list of products that Preset currently integrates with:
-
1
Google Cloud BigQuery
Google
Free ($300 in free credits) 1,731 RatingsBigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently. -
2
Satori
Satori
86 RatingsSatori is a Data Security Platform (DSP) that enables self-service data and analytics for data-driven companies. With Satori, users have a personal data portal where they can see all available datasets and gain immediate access to them. That means your data consumers get data access in seconds instead of weeks. Satori’s DSP dynamically applies the appropriate security and access policies, reducing manual data engineering work. Satori’s DSP manages access, permissions, security, and compliance policies - all from a single console. Satori continuously classifies sensitive data in all your data stores (databases, data lakes, and data warehouses), and dynamically tracks data usage while applying relevant security policies. Satori enables your data use to scale across the company while meeting all data security and compliance requirements. -
3
Snowflake is a cloud-native data platform that combines data warehousing, data lakes, and data sharing into a single solution. By offering elastic scalability and automatic scaling, Snowflake enables businesses to handle vast amounts of data while maintaining high performance at low cost. The platform's architecture allows users to separate storage and compute, offering flexibility in managing workloads. Snowflake supports real-time data sharing and integrates seamlessly with other analytics tools, enabling teams to collaborate and gain insights from their data more efficiently. Its secure, multi-cloud architecture makes it a strong choice for enterprises looking to leverage data at scale.
-
4
SQLite is a C-language library that offers a compact, efficient, and reliable SQL database engine that is fully featured. Recognized as the most popular database engine globally, SQLite is embedded in every mobile device and the majority of computers, while also being included in a myriad of applications that are used daily by individuals. Operating as an in-process library, SQLite provides a self-sufficient, serverless, and zero-configuration transactional SQL database engine. The source code of SQLite resides in the public domain, making it available for anyone to use freely, whether for commercial or personal purposes. With its extensive deployment and integration into numerous applications, SQLite stands out as an invaluable tool for developers in various high-profile projects. Its versatility and ease of use contribute to its unmatched popularity in the database landscape.
-
5
MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
-
6
SQL Server
Microsoft
Free 2 RatingsMicrosoft SQL Server 2019 incorporates both intelligence and security, providing users with added features at no additional cost while ensuring top-tier performance and adaptability for on-premises requirements. You can seamlessly transition to the cloud, taking full advantage of its efficiency and agility without the need to alter your existing code. By leveraging Azure, you can accelerate insight generation and predictive analytics. Development is flexible, allowing you to utilize your preferred technologies, including open-source options, supported by Microsoft's advancements. The platform enables easy data integration into your applications and offers a comprehensive suite of cognitive services that facilitate the creation of human-like intelligence, regardless of data volume. The integration of AI is intrinsic to the data platform, allowing for quicker insight extraction from both on-premises and cloud-stored data. By combining your unique enterprise data with global data, you can foster an organization that is driven by intelligence. The dynamic data platform provides a consistent user experience across various environments, expediting the time it takes to bring innovations to market; this allows you to develop your applications and deploy them in any environment you choose, enhancing overall operational efficiency. -
7
Amazon Athena
Amazon
2 RatingsAmazon Athena serves as an interactive query service that simplifies the process of analyzing data stored in Amazon S3 through the use of standard SQL. As a serverless service, it eliminates the need for infrastructure management, allowing users to pay solely for the queries they execute. The user-friendly interface enables you to simply point to your data in Amazon S3, establish the schema, and begin querying with standard SQL commands, with most results returning in mere seconds. Athena negates the requirement for intricate ETL processes to prepare data for analysis, making it accessible for anyone possessing SQL skills to swiftly examine large datasets. Additionally, Athena integrates seamlessly with AWS Glue Data Catalog, which facilitates the creation of a consolidated metadata repository across multiple services. This integration allows users to crawl data sources to identify schemas, update the Catalog with new and modified table and partition definitions, and manage schema versioning effectively. Not only does this streamline data management, but it also enhances the overall efficiency of data analysis within the AWS ecosystem. -
8
Elasticsearch
Elastic
1 RatingElastic is a search company. Elasticsearch, Kibana Beats, Logstash, and Elasticsearch are the founders of the ElasticStack. These SaaS offerings allow data to be used in real-time and at scale for analytics, security, search, logging, security, and search. Elastic has over 100,000 members in 45 countries. Elastic's products have been downloaded more than 400 million times since their initial release. Today, thousands of organizations including Cisco, eBay and Dell, Goldman Sachs and Groupon, HP and Microsoft, as well as Netflix, Uber, Verizon and Yelp use Elastic Stack and Elastic Cloud to power mission critical systems that generate new revenue opportunities and huge cost savings. Elastic is headquartered in Amsterdam, The Netherlands and Mountain View, California. It has more than 1,000 employees in over 35 countries. -
9
ClickHouse
ClickHouse
1 RatingClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads. -
10
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes. -
11
Rockset
Rockset
FreeReal-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers. -
12
5X
5X
$350 per month5X is a comprehensive data management platform that consolidates all the necessary tools for centralizing, cleaning, modeling, and analyzing your data. With its user-friendly design, 5X seamlessly integrates with more than 500 data sources, allowing for smooth and continuous data flow across various systems through both pre-built and custom connectors. The platform features a wide array of functions, including ingestion, data warehousing, modeling, orchestration, and business intelligence, all presented within an intuitive interface. It efficiently manages diverse data movements from SaaS applications, databases, ERPs, and files, ensuring that data is automatically and securely transferred to data warehouses and lakes. Security is a top priority for 5X, as it encrypts data at the source and identifies personally identifiable information, applying encryption at the column level to safeguard sensitive data. Additionally, the platform is engineered to lower the total cost of ownership by 30% when compared to developing a custom solution, thereby boosting productivity through a single interface that enables the construction of complete data pipelines from start to finish. This makes 5X an ideal choice for businesses aiming to streamline their data processes effectively. -
13
IBM Db2
IBM
IBM Db2 encompasses a suite of data management solutions, prominently featuring the Db2 relational database. These offerings incorporate AI-driven functionalities designed to streamline the management of both structured and unstructured data across various on-premises and multicloud settings. By simplifying data accessibility, the Db2 suite empowers businesses to leverage the advantages of AI effectively. Most components of the Db2 family are integrated within the IBM Cloud Pak® for Data platform, available either as additional features or as built-in data source services, ensuring that nearly all data is accessible across hybrid or multicloud frameworks to support AI-driven applications. You can easily unify your transactional data repositories and swiftly extract insights through intelligent, universal querying across diverse data sources. The multimodel functionality helps reduce expenses by removing the necessity for data replication and migration. Additionally, Db2 offers enhanced flexibility, allowing for deployment on any cloud service provider, which further optimizes operational agility and responsiveness. This versatility in deployment options ensures that businesses can adapt their data management strategies as their needs evolve. -
14
Greenplum
Greenplum Database
Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation. -
15
Apache Druid
Druid
Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions. -
16
Exasol
Exasol
An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success. -
17
MonetDB
MonetDB
Explore a diverse array of SQL features that allow you to build applications ranging from straightforward analytics to complex hybrid transactional and analytical processing. If you're eager to uncover insights from your data, striving for efficiency, or facing tight deadlines, MonetDB can deliver query results in just seconds or even faster. For those looking to leverage or modify their own code and requiring specialized functions, MonetDB provides hooks to integrate user-defined functions in SQL, Python, R, or C/C++. Become part of the vibrant MonetDB community that spans over 130 countries, including students, educators, researchers, startups, small businesses, and large corporations. Embrace the forefront of analytical database technology and ride the wave of innovation! Save time with MonetDB’s straightforward installation process, allowing you to quickly get your database management system operational. This accessibility ensures that users of all backgrounds can efficiently harness the power of data for their projects. -
18
PostgreSQL
PostgreSQL Global Development Group
PostgreSQL stands out as a highly capable, open-source object-relational database system that has been actively developed for more than three decades, earning a solid reputation for its reliability, extensive features, and impressive performance. Comprehensive resources for installation and usage are readily available in the official documentation, which serves as an invaluable guide for both new and experienced users. Additionally, the open-source community fosters numerous forums and platforms where individuals can learn about PostgreSQL, understand its functionalities, and explore job opportunities related to it. Engaging with this community can enhance your knowledge and connection to the PostgreSQL ecosystem. Recently, the PostgreSQL Global Development Group announced updates for all supported versions, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23, which address 25 reported bugs from the past few months. Notably, this marks the final release for PostgreSQL 10, meaning that it will no longer receive any security patches or bug fixes going forward. Therefore, if you are currently utilizing PostgreSQL 10 in your production environment, it is highly recommended that you plan to upgrade to a more recent version to ensure continued support and security. Upgrading will not only help maintain the integrity of your data but also allow you to take advantage of the latest features and improvements introduced in newer releases. -
19
Presto
Presto Foundation
Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape. -
20
Apache Kylin
Apache Software Foundation
Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights. -
21
MariaDB
MariaDB
MariaDB Platform is an enterprise-level open-source database solution. It supports transactional, analytical, and hybrid workloads, as well as relational and JSON data models. It can scale from standalone databases to data warehouses to fully distributed SQL, which can execute millions of transactions per second and perform interactive, ad-hoc analytics on billions upon billions of rows. MariaDB can be deployed on prem-on commodity hardware. It is also available on all major public cloud providers and MariaDB SkySQL, a fully managed cloud database. MariaDB.com provides more information. -
22
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
- Previous
- You're on page 1
- Next