Best Phi-4-reasoning Alternatives in 2025
Find the top alternatives to Phi-4-reasoning currently available. Compare ratings, reviews, pricing, and features of Phi-4-reasoning alternatives in 2025. Slashdot lists the best Phi-4-reasoning alternatives on the market that offer competing products that are similar to Phi-4-reasoning. Sort through Phi-4-reasoning alternatives below to make the best choice for your needs
-
1
Phi-4-reasoning-plus
Microsoft
Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models. -
2
Phi-4-mini-reasoning
Microsoft
Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields. -
3
kluster.ai
kluster.ai
$0.15per inputKluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects. -
4
Open R1
Open R1
FreeOpen R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence. -
5
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
6
DeepSeek R1
DeepSeek
Free 1 RatingDeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains. -
7
EXAONE Deep
LG
FreeEXAONE Deep represents a collection of advanced language models that are enhanced for reasoning, created by LG AI Research, and come in sizes of 2.4 billion, 7.8 billion, and 32 billion parameters. These models excel in a variety of reasoning challenges, particularly in areas such as mathematics and coding assessments. Significantly, the EXAONE Deep 2.4B model outshines other models of its size, while the 7.8B variant outperforms both open-weight models of similar dimensions and the proprietary reasoning model known as OpenAI o1-mini. Furthermore, the EXAONE Deep 32B model competes effectively with top-tier open-weight models in the field. The accompanying repository offers extensive documentation that includes performance assessments, quick-start guides for leveraging EXAONE Deep models with the Transformers library, detailed explanations of quantized EXAONE Deep weights formatted in AWQ and GGUF, as well as guidance on how to run these models locally through platforms like llama.cpp and Ollama. Additionally, this resource serves to enhance user understanding and accessibility to the capabilities of EXAONE Deep models. -
8
Stable Beluga
Stability AI
FreeStability AI, along with its CarperAI lab, is excited to unveil Stable Beluga 1 and its advanced successor, Stable Beluga 2, previously known as FreeWilly, both of which are robust new Large Language Models (LLMs) available for public use. These models exhibit remarkable reasoning capabilities across a wide range of benchmarks, showcasing their versatility and strength. Stable Beluga 1 is built on the original LLaMA 65B foundation model and has undergone meticulous fine-tuning with a novel synthetically-generated dataset utilizing Supervised Fine-Tune (SFT) in the conventional Alpaca format. In a similar vein, Stable Beluga 2 utilizes the LLaMA 2 70B foundation model, pushing the boundaries of performance in the industry. Their development marks a significant step forward in the evolution of open access AI technologies. -
9
DeepSeek-V3
DeepSeek
Free 1 RatingDeepSeek-V3 represents a groundbreaking advancement in artificial intelligence, specifically engineered to excel in natural language comprehension, sophisticated reasoning, and decision-making processes. By utilizing highly advanced neural network designs, this model incorporates vast amounts of data alongside refined algorithms to address intricate problems across a wide array of fields, including research, development, business analytics, and automation. Prioritizing both scalability and operational efficiency, DeepSeek-V3 equips developers and organizations with innovative resources that can significantly expedite progress and lead to transformative results. Furthermore, its versatility makes it suitable for various applications, enhancing its value across industries. -
10
ERNIE X1 Turbo
Baidu
$0.14 per 1M tokensBaidu’s ERNIE X1 Turbo is designed for industries that require advanced cognitive and creative AI abilities. Its multimodal processing capabilities allow it to understand and generate responses based on a range of data inputs, including text, images, and potentially audio. This AI model’s advanced reasoning mechanisms and competitive performance make it a strong alternative to high-cost models like DeepSeek R1. Additionally, ERNIE X1 Turbo integrates seamlessly into various applications, empowering developers and businesses to use AI more effectively while lowering the costs typically associated with these technologies. -
11
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
12
DeepSeek R2
DeepSeek
FreeDeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries. -
13
OpenAI o3-mini
OpenAI
The o3-mini by OpenAI is a streamlined iteration of the sophisticated o3 AI model, delivering robust reasoning skills in a more compact and user-friendly format. It specializes in simplifying intricate instructions into digestible steps, making it particularly adept at coding, competitive programming, and tackling mathematical and scientific challenges. This smaller model maintains the same level of accuracy and logical reasoning as the larger version, while operating with lower computational demands, which is particularly advantageous in environments with limited resources. Furthermore, o3-mini incorporates inherent deliberative alignment, promoting safe, ethical, and context-sensitive decision-making. Its versatility makes it an invaluable resource for developers, researchers, and enterprises striving for an optimal mix of performance and efficiency in their projects. The combination of these features positions o3-mini as a significant tool in the evolving landscape of AI-driven solutions. -
14
Hermes 3
Nous Research
FreePush the limits of individual alignment, artificial consciousness, open-source software, and decentralization through experimentation that larger corporations and governments often shy away from. Hermes 3 features sophisticated long-term context retention, the ability to engage in multi-turn conversations, and intricate roleplaying and internal monologue capabilities, alongside improved functionality for agentic function-calling. The design of this model emphasizes precise adherence to system prompts and instruction sets in a flexible way. By fine-tuning Llama 3.1 across various scales, including 8B, 70B, and 405B, and utilizing a dataset largely composed of synthetically generated inputs, Hermes 3 showcases performance that rivals and even surpasses Llama 3.1, while also unlocking greater potential in reasoning and creative tasks. This series of instructive and tool-utilizing models exhibits exceptional reasoning and imaginative skills, paving the way for innovative applications. Ultimately, Hermes 3 represents a significant advancement in the landscape of AI development. -
15
Hunyuan T1
Tencent
Tencent has unveiled the Hunyuan T1, its advanced AI model, which is now accessible to all users via the Tencent Yuanbao platform. This model is particularly adept at grasping various dimensions and potential logical connections, making it ideal for tackling intricate challenges. Users have the opportunity to explore a range of AI models available on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. Anticipation is building for the forthcoming official version of the Tencent Hunyuan T1 model, which will introduce external API access and additional services. Designed on the foundation of Tencent's Hunyuan large language model, Yuanbao stands out for its proficiency in Chinese language comprehension, logical reasoning, and effective task performance. It enhances user experience by providing AI-driven search, summaries, and writing tools, allowing for in-depth document analysis as well as engaging prompt-based dialogues. The platform's versatility is expected to attract a wide array of users seeking innovative solutions. -
16
Azure OpenAI Service
Microsoft
$0.0004 per 1000 tokensUtilize sophisticated coding and language models across a diverse range of applications. Harness the power of expansive generative AI models that possess an intricate grasp of both language and code, paving the way for enhanced reasoning and comprehension skills essential for developing innovative applications. These advanced models can be applied to multiple scenarios, including writing support, automatic code creation, and data reasoning. Moreover, ensure responsible AI practices by implementing measures to detect and mitigate potential misuse, all while benefiting from enterprise-level security features offered by Azure. With access to generative models pretrained on vast datasets comprising trillions of words, you can explore new possibilities in language processing, code analysis, reasoning, inferencing, and comprehension. Further personalize these generative models by using labeled datasets tailored to your unique needs through an easy-to-use REST API. Additionally, you can optimize your model's performance by fine-tuning hyperparameters for improved output accuracy. The few-shot learning functionality allows you to provide sample inputs to the API, resulting in more pertinent and context-aware outcomes. This flexibility enhances your ability to meet specific application demands effectively. -
17
OpenAI o3-mini-high
OpenAI
The o3-mini-high model developed by OpenAI enhances artificial intelligence reasoning capabilities by improving deep problem-solving skills in areas such as programming, mathematics, and intricate tasks. This model incorporates adaptive thinking time and allows users to select from various reasoning modes—low, medium, and high—to tailor performance to the difficulty of the task at hand. Impressively, it surpasses the o1 series by an impressive 200 Elo points on Codeforces, providing exceptional efficiency at a reduced cost while ensuring both speed and precision in its operations. As a notable member of the o3 family, this model not only expands the frontiers of AI problem-solving but also remains user-friendly, offering a complimentary tier alongside increased limits for Plus subscribers, thereby making advanced AI more widely accessible. Its innovative design positions it as a significant tool for users looking to tackle challenging problems with enhanced support and adaptability. -
18
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
19
Elemental Cognition
Elemental Cognition
Address intricate business challenges where the margin for error is minimal by leveraging Elemental Cognition AI to create applications that provide clear and demonstrable reasoning. Relying solely on large language models is insufficient for tackling such complex issues effectively. Implement AI solutions that not only investigate but also efficiently address multifaceted problems where precision, accuracy, and clarity are paramount. Transform expert insights into actionable programming through a conversational process, enabling seamless knowledge capture. Elemental Cognition translates accessible English documents into constraint-solving code, ensuring that the underlying business logic is comprehensible, testable, and adjustable. Navigate the complexities of difficult problems while ensuring your application remains on course. Enhance real-time constraint solving and optimization tailored to your organization by utilizing interactive AI that comprehends, reasons through, and resolves complicated trade-offs, ultimately guiding users toward optimal decisions. This approach not only maximizes accuracy but also fosters a deeper understanding among stakeholders regarding the decision-making processes at play. -
20
DeepSeek-Coder-V2
DeepSeek
DeepSeek-Coder-V2 is an open-source model tailored for excellence in programming and mathematical reasoning tasks. Utilizing a Mixture-of-Experts (MoE) architecture, it boasts a staggering 236 billion total parameters, with 21 billion of those being activated per token, which allows for efficient processing and outstanding performance. Trained on a massive dataset comprising 6 trillion tokens, this model enhances its prowess in generating code and tackling mathematical challenges. With the ability to support over 300 programming languages, DeepSeek-Coder-V2 has consistently outperformed its competitors on various benchmarks. It is offered in several variants, including DeepSeek-Coder-V2-Instruct, which is optimized for instruction-based tasks, and DeepSeek-Coder-V2-Base, which is effective for general text generation. Additionally, the lightweight options, such as DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, cater to environments that require less computational power. These variations ensure that developers can select the most suitable model for their specific needs, making DeepSeek-Coder-V2 a versatile tool in the programming landscape. -
21
Gemini 1.5 Pro
Google
1 RatingThe Gemini 1.5 Pro AI model represents a pinnacle in language modeling, engineered to produce remarkably precise, context-sensitive, and human-like replies suitable for a wide range of uses. Its innovative neural framework allows it to excel in tasks involving natural language comprehension, generation, and reasoning. This model has been meticulously fine-tuned for adaptability, making it capable of handling diverse activities such as content creation, coding, data analysis, and intricate problem-solving. Its sophisticated algorithms provide a deep understanding of language, allowing for smooth adjustments to various domains and conversational tones. Prioritizing both scalability and efficiency, the Gemini 1.5 Pro is designed to cater to both small applications and large-scale enterprise deployments, establishing itself as an invaluable asset for driving productivity and fostering innovation. Moreover, its ability to learn from user interactions enhances its performance, making it even more effective in real-world scenarios. -
22
Qwen2.5-Max
Alibaba
FreeQwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology. -
23
QwQ-32B
Alibaba
FreeThe QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence. -
24
Llama 3.3
Meta
FreeThe newest version in the Llama series, Llama 3.3, represents a significant advancement in language models aimed at enhancing AI's capabilities in understanding and communication. It boasts improved contextual reasoning, superior language generation, and advanced fine-tuning features aimed at producing exceptionally accurate, human-like responses across a variety of uses. This iteration incorporates a more extensive training dataset, refined algorithms for deeper comprehension, and mitigated biases compared to earlier versions. Llama 3.3 stands out in applications including natural language understanding, creative writing, technical explanations, and multilingual interactions, making it a crucial asset for businesses, developers, and researchers alike. Additionally, its modular architecture facilitates customizable deployment in specific fields, ensuring it remains versatile and high-performing even in large-scale applications. With these enhancements, Llama 3.3 is poised to redefine the standards of AI language models. -
25
DeepEval
Confident AI
FreeDeepEval offers an intuitive open-source framework designed for the assessment and testing of large language model systems, similar to what Pytest does but tailored specifically for evaluating LLM outputs. It leverages cutting-edge research to measure various performance metrics, including G-Eval, hallucinations, answer relevancy, and RAGAS, utilizing LLMs and a range of other NLP models that operate directly on your local machine. This tool is versatile enough to support applications developed through methods like RAG, fine-tuning, LangChain, or LlamaIndex. By using DeepEval, you can systematically explore the best hyperparameters to enhance your RAG workflow, mitigate prompt drift, or confidently shift from OpenAI services to self-hosting your Llama2 model. Additionally, the framework features capabilities for synthetic dataset creation using advanced evolutionary techniques and integrates smoothly with well-known frameworks, making it an essential asset for efficient benchmarking and optimization of LLM systems. Its comprehensive nature ensures that developers can maximize the potential of their LLM applications across various contexts. -
26
DeepSeek-V2
DeepSeek
FreeDeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence. -
27
Claude Sonnet 3.7
Anthropic
Free 1 RatingClaude Sonnet 3.7, a state-of-the-art AI model by Anthropic, is designed for versatility, offering users the option to switch between quick, efficient responses and deeper, more reflective answers. This dynamic model shines in complex problem-solving scenarios, where high-level reasoning and nuanced understanding are crucial. By allowing Claude to pause for self-reflection before answering, Sonnet 3.7 excels in tasks that demand deep analysis, such as coding, natural language processing, and critical thinking applications. Its flexibility makes it an invaluable tool for professionals and organizations looking for an adaptable AI that delivers both speed and thoughtful insights. -
28
OpenAI's o1 series introduces a new generation of AI models specifically developed to enhance reasoning skills. Among these models are o1-preview and o1-mini, which utilize an innovative reinforcement learning technique that encourages them to dedicate more time to "thinking" through various problems before delivering solutions. This method enables the o1 models to perform exceptionally well in intricate problem-solving scenarios, particularly in fields such as coding, mathematics, and science, and they have shown to surpass earlier models like GPT-4o in specific benchmarks. The o1 series is designed to address challenges that necessitate more profound cognitive processes, representing a pivotal advancement toward AI systems capable of reasoning in a manner similar to humans. As it currently stands, the series is still undergoing enhancements and assessments, reflecting OpenAI's commitment to refining these technologies further. The continuous development of the o1 models highlights the potential for AI to evolve and meet more complex demands in the future.
-
29
Oumi
Oumi
FreeOumi is an entirely open-source platform that enhances the complete lifecycle of foundation models, encompassing everything from data preparation and training to evaluation and deployment. It facilitates the training and fine-tuning of models with parameter counts ranging from 10 million to an impressive 405 billion, utilizing cutting-edge methodologies such as SFT, LoRA, QLoRA, and DPO. Supporting both text-based and multimodal models, Oumi is compatible with various architectures like Llama, DeepSeek, Qwen, and Phi. The platform also includes tools for data synthesis and curation, allowing users to efficiently create and manage their training datasets. For deployment, Oumi seamlessly integrates with well-known inference engines such as vLLM and SGLang, which optimizes model serving. Additionally, it features thorough evaluation tools across standard benchmarks to accurately measure model performance. Oumi's design prioritizes flexibility, enabling it to operate in diverse environments ranging from personal laptops to powerful cloud solutions like AWS, Azure, GCP, and Lambda, making it a versatile choice for developers. This adaptability ensures that users can leverage the platform regardless of their operational context, enhancing its appeal across different use cases. -
30
Smaug-72B
Abacus
FreeSmaug-72B is a formidable open-source large language model (LLM) distinguished by several prominent features: Exceptional Performance: It currently ranks first on the Hugging Face Open LLM leaderboard, outperforming models such as GPT-3.5 in multiple evaluations, demonstrating its ability to comprehend, react to, and generate text that closely resembles human writing. Open Source Availability: In contrast to many high-end LLMs, Smaug-72B is accessible to everyone for use and modification, which encourages cooperation and innovation within the AI ecosystem. Emphasis on Reasoning and Mathematics: This model excels particularly in reasoning and mathematical challenges, a capability attributed to specialized fine-tuning methods developed by its creators, Abacus AI. Derived from Qwen-72B: It is essentially a refined version of another robust LLM, Qwen-72B, which was launched by Alibaba, thereby enhancing its overall performance. In summary, Smaug-72B marks a notable advancement in the realm of open-source artificial intelligence, making it a valuable resource for developers and researchers alike. Its unique strengths not only elevate its status but also contribute to the ongoing evolution of AI technology. -
31
QVQ-Max
Alibaba
FreeQVQ-Max is an advanced visual reasoning platform that enables AI to process images and videos for solving diverse problems, from academic tasks to creative projects. With its ability to perform detailed observation, such as identifying objects and reading charts, along with deep reasoning to analyze content, QVQ-Max can assist in solving complex mathematical equations or predicting actions in video clips. The model's flexibility extends to creative endeavors, helping users refine sketches or develop scripts for videos. Although still in early development, QVQ-Max has already showcased its potential in a wide range of applications, including data analysis, education, and lifestyle assistance. -
32
DeepSeekMath
DeepSeek
FreeDeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics. -
33
Humiris AI
Humiris AI
Humiris AI represents a cutting-edge infrastructure platform designed for artificial intelligence that empowers developers to create sophisticated applications through the integration of multiple Large Language Models (LLMs). By providing a multi-LLM routing and reasoning layer, it enables users to enhance their generative AI workflows within a versatile and scalable framework. The platform caters to a wide array of applications, such as developing chatbots, fine-tuning several LLMs at once, facilitating retrieval-augmented generation, constructing advanced reasoning agents, performing in-depth data analysis, and generating code. Its innovative data format is compatible with all foundational models, ensuring smooth integration and optimization processes. Users can easily begin by registering, creating a project, inputting their LLM provider API keys, and setting parameters to generate a customized mixed model that meets their distinct requirements. Additionally, it supports deployment on users' own infrastructure, which guarantees complete data sovereignty and adherence to both internal and external regulations, fostering a secure environment for innovation and development. This flexibility not only enhances user experience but also ensures that developers can leverage the full potential of AI technology. -
34
Llama 3.1
Meta
FreeIntroducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective. -
35
DeepSeek-VL
DeepSeek
FreeDeepSeek-VL is an innovative open-source model that integrates vision and language capabilities, catering to practical applications in real-world contexts. Our strategy revolves around three fundamental aspects: we prioritize gathering diverse and scalable data that thoroughly encompasses various real-life situations, such as web screenshots, PDFs, OCR outputs, charts, and knowledge-based information, to ensure a holistic understanding of practical environments. Additionally, we develop a taxonomy based on actual user scenarios and curate a corresponding instruction tuning dataset that enhances the model's performance. This fine-tuning process significantly elevates user satisfaction and effectiveness in real-world applications. To address efficiency while meeting the requirements of typical scenarios, DeepSeek-VL features a hybrid vision encoder that adeptly handles high-resolution images (1024 x 1024) without incurring excessive computational costs. Moreover, this design choice not only optimizes performance but also ensures accessibility for a broader range of users and applications. -
36
OpenAI o4-mini
OpenAI
The o4-mini model, a more compact and efficient iteration of the o3 model, was developed to enhance reasoning capabilities and streamline performance. It excels in tasks requiring complex problem-solving, making it an ideal solution for users demanding more powerful AI. By refining its design, OpenAI has made significant strides in creating a model that balances efficiency with advanced capabilities. With this release, the o4-mini is poised to meet the growing need for smarter AI tools while maintaining the robust functionality of its predecessor. It plays a critical role in OpenAI’s ongoing efforts to push the boundaries of artificial intelligence ahead of the GPT-5 launch. -
37
Marco-o1
AIDC-AI
FreeMarco-o1 represents a state-of-the-art AI framework specifically designed for superior natural language understanding and immediate problem resolution. It is meticulously crafted to provide accurate and contextually appropriate replies, merging profound language insight with an optimized framework for enhanced speed and effectiveness. This model thrives in numerous settings, such as interactive dialogue systems, content generation, technical assistance, and complex decision-making processes, effortlessly adjusting to various user requirements. Prioritizing seamless, user-friendly experiences, dependability, and adherence to ethical AI standards, Marco-o1 emerges as a leading-edge resource for both individuals and enterprises in pursuit of intelligent, flexible, and scalable AI solutions. Additionally, the MCTS technique facilitates the investigation of numerous reasoning pathways by utilizing confidence scores based on the softmax-adjusted log probabilities of the top-k alternative tokens, steering the model towards the most effective resolutions while maintaining a high level of precision. Such capabilities not only enhance the overall performance of the model but also significantly improve user satisfaction and engagement. -
38
QwQ-Max-Preview
Alibaba
FreeQwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community. -
39
Phi-2
Microsoft
We are excited to announce the launch of Phi-2, a language model featuring 2.7 billion parameters that excels in reasoning and language comprehension, achieving top-tier results compared to other base models with fewer than 13 billion parameters. In challenging benchmarks, Phi-2 competes with and often surpasses models that are up to 25 times its size, a feat made possible by advancements in model scaling and meticulous curation of training data. Due to its efficient design, Phi-2 serves as an excellent resource for researchers interested in areas such as mechanistic interpretability, enhancing safety measures, or conducting fine-tuning experiments across a broad spectrum of tasks. To promote further exploration and innovation in language modeling, Phi-2 has been integrated into the Azure AI Studio model catalog, encouraging collaboration and development within the research community. Researchers can leverage this model to unlock new insights and push the boundaries of language technology. -
40
Gradient
Gradient
$0.0005 per 1,000 tokensEasily fine-tune and receive completions from private LLMs through a user-friendly web API without any need for complex infrastructure. Instantly create AI applications that comply with SOC2 standards while ensuring privacy. Our developer platform allows you to tailor models to fit your specific needs effortlessly—just specify the data you'd like to use for training and select the base model, and we’ll handle everything else for you. Integrate private LLMs into your applications with a single API call, eliminating the challenges of deployment, orchestration, and infrastructure management. Experience the most advanced open-source model available, which boasts remarkable narrative and reasoning skills along with highly generalized capabilities. Leverage a fully unlocked LLM to develop top-tier internal automation solutions for your organization, ensuring efficiency and innovation in your workflows. With our comprehensive tools, you can transform your AI aspirations into reality in no time. -
41
NVIDIA Llama Nemotron
NVIDIA
The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems. -
42
Qwen2.5-VL-32B
Alibaba
Qwen2.5-VL-32B represents an advanced AI model specifically crafted for multimodal endeavors, showcasing exceptional skills in reasoning related to both text and images. This iteration enhances the previous Qwen2.5-VL series, resulting in responses that are not only of higher quality but also more aligned with human-like formatting. The model demonstrates remarkable proficiency in mathematical reasoning, nuanced image comprehension, and intricate multi-step reasoning challenges, such as those encountered in benchmarks like MathVista and MMMU. Its performance has been validated through comparisons with competing models, often surpassing even the larger Qwen2-VL-72B in specific tasks. Furthermore, with its refined capabilities in image analysis and visual logic deduction, Qwen2.5-VL-32B offers thorough and precise evaluations of visual content, enabling it to generate insightful responses from complex visual stimuli. This model has been meticulously optimized for both textual and visual tasks, making it exceptionally well-suited for scenarios that demand advanced reasoning and understanding across various forms of media, thus expanding its potential applications even further. -
43
AI Verse
AI Verse
When capturing data in real-life situations is difficult, we create diverse, fully-labeled image datasets. Our procedural technology provides the highest-quality, unbiased, and labeled synthetic datasets to improve your computer vision model. AI Verse gives users full control over scene parameters. This allows you to fine-tune environments for unlimited image creation, giving you a competitive edge in computer vision development. -
44
Gemini 2.0 Flash Thinking
Google
Gemini 2.0 Flash Thinking is an innovative artificial intelligence model created by Google DeepMind, aimed at improving reasoning abilities through the clear articulation of its thought processes. This openness enables the model to address intricate challenges more efficiently while offering users straightforward insights into its decision-making journey. By revealing its internal reasoning, Gemini 2.0 Flash Thinking not only boosts performance but also enhances explainability, rendering it an essential resource for applications that necessitate a profound comprehension and confidence in AI-driven solutions. Furthermore, this approach fosters a deeper relationship between users and the technology, as it demystifies the workings of AI. -
45
Llama 3.2
Meta
FreeThe latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains.