Windocks
Windocks provides on-demand Oracle, SQL Server, as well as other databases that can be customized for Dev, Test, Reporting, ML, DevOps, and DevOps. Windocks database orchestration allows for code-free end to end automated delivery. This includes masking, synthetic data, Git operations and access controls, as well as secrets management. Databases can be delivered to conventional instances, Kubernetes or Docker containers.
Windocks can be installed on standard Linux or Windows servers in minutes. It can also run on any public cloud infrastructure or on-premise infrastructure. One VM can host up 50 concurrent database environments. When combined with Docker containers, enterprises often see a 5:1 reduction of lower-level database VMs.
Learn more
RunPod
RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
Learn more
SKY ENGINE AI
SKY ENGINE AI provides a unified Synthetic Data Cloud designed to power next-generation Vision AI training with photorealistic 3D generative scenes. Its engine simulates multispectral environments—including visible light, thermal, NIR, and UWB—while producing detailed semantic masks, bounding boxes, depth maps, and metadata. The platform features domain processors, GAN-based adaptation, and domain-gap inspection tools to ensure synthetic datasets closely match real-world distributions. Data scientists work efficiently through an integrated coding environment with deep PyTorch/TensorFlow integration and seamless MLOps compatibility. For large-scale production, SKY ENGINE AI offers distributed rendering clusters, cloud instance orchestration, automated randomization, and reusable 3D scene blueprints for automotive, robotics, security, agriculture, and manufacturing. Users can run continuous data iteration cycles to cover edge cases, detect model blind spots, and refine training sets in minutes instead of months. With support for CGI standards, physics-based shaders, and multimodal sensor simulation, the platform enables highly customizable Vision AI pipelines. This end-to-end approach reduces operational costs, accelerates development, and delivers consistently high-performance models.
Learn more
Rendered.ai
Address the obstacles faced in gathering data for the training of machine learning and AI systems by utilizing Rendered.ai, a platform-as-a-service tailored for data scientists, engineers, and developers. This innovative tool facilitates the creation of synthetic datasets specifically designed for ML and AI training and validation purposes. Users can experiment with various sensor models, scene content, and post-processing effects to enhance their projects. Additionally, it allows for the characterization and cataloging of both real and synthetic datasets. Data can be easily downloaded or transferred to personal cloud repositories for further processing and training. By harnessing the power of synthetic data, users can drive innovation and boost productivity. Rendered.ai also enables the construction of custom pipelines that accommodate a variety of sensors and computer vision inputs. With free, customizable Python sample code available, users can quickly start modeling SAR, RGB satellite imagery, and other sensor types. The platform encourages experimentation and iteration through flexible licensing, permitting nearly unlimited content generation. Furthermore, users can rapidly create labeled content within a high-performance computing environment that is hosted. To streamline collaboration, Rendered.ai offers a no-code configuration experience, fostering teamwork between data scientists and data engineers. This comprehensive approach ensures that teams have the tools they need to effectively manage and utilize data in their projects.
Learn more