Best Neuton AutoML Alternatives in 2025

Find the top alternatives to Neuton AutoML currently available. Compare ratings, reviews, pricing, and features of Neuton AutoML alternatives in 2025. Slashdot lists the best Neuton AutoML alternatives on the market that offer competing products that are similar to Neuton AutoML. Sort through Neuton AutoML alternatives below to make the best choice for your needs

  • 1
    Levity Reviews
    Levity is a no-code platform for creating custom AI models that take daily, repetitive tasks off your shoulders. Levity allows you to train AI models on documents, free text or images without writing any code. Build intelligent automations into existing workflows and connect them to the tools you already use. The platform is designed in a non-technical way, so everybody can start building within minutes and set up powerful automations without waiting for developer resources. If you struggle with daily tedious tasks that rule-based automation just can't handle, Levity is the quickest way to finally let machines handle them. Check out Levity's extensive library of templates for common use-cases such as sentiment analysis, customer support or document classification to get started within minutes. Add your custom data to further tailor the AI to your specific needs and only stay in the loop for difficult cases, so the AI can learn along the way.
  • 2
    Google Cloud Natural Language API Reviews
    Leverage advanced machine learning techniques for thorough text analysis that can extract, interpret, and securely store textual data. With AutoML, you can create top-tier custom machine learning models effortlessly, without writing any code. Implement natural language understanding through the Natural Language API to enhance your applications. Utilize entity analysis to pinpoint and categorize various fields in documents, such as emails, chats, and social media interactions, followed by sentiment analysis to gauge customer feedback and derive actionable insights for product improvements and user experience. The Natural Language API, combined with speech-to-text capabilities, can also provide valuable insights from audio sources. Additionally, the Vision API enhances your capabilities with optical character recognition (OCR) for digitizing scanned documents. The Translation API further enables sentiment understanding across diverse languages. With custom entity extraction, you can identify specialized entities within your documents that may not be recognized by standard models, saving both time and resources on manual processing. Ultimately, you can train your own high-quality machine learning models to effectively classify, extract, and assess sentiment, making your analysis more targeted and efficient. This comprehensive approach ensures a robust understanding of textual and audio data, empowering businesses with deeper insights.
  • 3
    Neural Designer Reviews
    Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
  • 4
    Supervisely Reviews
    The premier platform designed for the complete computer vision process allows you to evolve from image annotation to precise neural networks at speeds up to ten times quicker. Utilizing our exceptional data labeling tools, you can convert your images, videos, and 3D point clouds into top-notch training data. This enables you to train your models, monitor experiments, visualize results, and consistently enhance model predictions, all while constructing custom solutions within a unified environment. Our self-hosted option ensures data confidentiality, offers robust customization features, and facilitates seamless integration with your existing technology stack. This comprehensive solution for computer vision encompasses multi-format data annotation and management, large-scale quality control, and neural network training within an all-in-one platform. Crafted by data scientists for their peers, this powerful video labeling tool draws inspiration from professional video editing software and is tailored for machine learning applications and beyond. With our platform, you can streamline your workflow and significantly improve the efficiency of your computer vision projects.
  • 5
    Neural Magic Reviews
    GPUs excel at swiftly transferring data but suffer from limited locality of reference due to their relatively small caches, which makes them better suited for scenarios that involve heavy computation on small datasets rather than light computation on large ones. Consequently, the networks optimized for GPU architecture tend to run in layers sequentially to maximize the throughput of their computational pipelines (as illustrated in Figure 1 below). To accommodate larger models, given the GPUs' restricted memory capacity of only tens of gigabytes, multiple GPUs are often pooled together, leading to the distribution of models across these units and resulting in a convoluted software framework that must navigate the intricacies of communication and synchronization between different machines. In contrast, CPUs possess significantly larger and faster caches, along with access to extensive memory resources that can reach terabytes, allowing a typical CPU server to hold memory equivalent to that of dozens or even hundreds of GPUs. This makes CPUs particularly well-suited for a brain-like machine learning environment, where only specific portions of a vast network are activated as needed, offering a more flexible and efficient approach to processing. By leveraging the strengths of CPUs, machine learning systems can operate more smoothly, accommodating the demands of complex models while minimizing overhead.
  • 6
    Automaton AI Reviews
    Utilizing Automaton AI's ADVIT platform, you can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all from a single interface. The system automatically optimizes data for each stage of the computer vision pipeline, allowing for a streamlined approach to data labeling processes and in-house data pipelines. You can efficiently handle both structured and unstructured datasets—be it video, images, or text—while employing automatic functions that prepare your data for every phase of the deep learning workflow. Once the data is accurately labeled and undergoes quality assurance, you can proceed with training your own model effectively. Deep neural network training requires careful hyperparameter tuning, including adjustments to batch size and learning rates, which are essential for maximizing model performance. Additionally, you can optimize and apply transfer learning to enhance the accuracy of your trained models. After the training phase, the model can be deployed into production seamlessly. ADVIT also supports model versioning, ensuring that model development and accuracy metrics are tracked in real-time. By leveraging a pre-trained DNN model for automatic labeling, you can further improve the overall accuracy of your models, paving the way for more robust applications in the future. This comprehensive approach to data and model management significantly enhances the efficiency of machine learning projects.
  • 7
    Profet AI Reviews
    Profet AI’s No-Code AutoML Platform, which is end-to-end and can be used by manufacturers as their Virtual Data Scientist, provides a complete solution for data analysis. It allows IT/domain experts to quickly build high-quality predictive models and deploy Industrial AI apps to solve their daily production and digitalization challenges. Profet AI AutoML Platform has been widely adopted by leading companies in the world across industries. These include leading EMS, Semi OSAT, PCB design houses, IC design houses, display panel and material solution providers. We use the successful cases of industry leading companies to benefit our customers and implement AI within a week.
  • 8
    NeuroIntelligence Reviews
    NeuroIntelligence is an advanced software application that leverages neural networks to support professionals in data mining, pattern recognition, and predictive modeling as they tackle practical challenges. This application includes only validated neural network modeling algorithms and techniques, ensuring both speed and user-friendliness. It offers features such as visualized architecture search, along with comprehensive training and testing of neural networks. Users benefit from tools like fitness bars and comparisons of training graphs, while also monitoring metrics like dataset error, network error, and weight distributions. The program provides a detailed analysis of input importance, alongside testing tools that include actual versus predicted graphs, scatter plots, response graphs, ROC curves, and confusion matrices. Designed with an intuitive interface, NeuroIntelligence effectively addresses issues in data mining, forecasting, classification, and pattern recognition. Thanks to its user-friendly GUI and innovative time-saving features, users can develop superior solutions in significantly less time. This efficiency empowers users to focus on optimizing their models and achieving better results.
  • 9
    GPT-4 Reviews

    GPT-4

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    GPT-4, or Generative Pre-trained Transformer 4, is a highly advanced unsupervised language model that is anticipated for release by OpenAI. As the successor to GPT-3, it belongs to the GPT-n series of natural language processing models and was developed using an extensive dataset comprising 45TB of text, enabling it to generate and comprehend text in a manner akin to human communication. Distinct from many conventional NLP models, GPT-4 operates without the need for additional training data tailored to specific tasks. It is capable of generating text or responding to inquiries by utilizing only the context it creates internally. Demonstrating remarkable versatility, GPT-4 can adeptly tackle a diverse array of tasks such as translation, summarization, question answering, sentiment analysis, and more, all without any dedicated task-specific training. This ability to perform such varied functions further highlights its potential impact on the field of artificial intelligence and natural language processing.
  • 10
    Neuri Reviews
    We engage in pioneering research on artificial intelligence to attain significant advantages in financial investment, shedding light on the market through innovative neuro-prediction techniques. Our approach integrates advanced deep reinforcement learning algorithms and graph-based learning with artificial neural networks to effectively model and forecast time series data. At Neuri, we focus on generating synthetic data that accurately reflects global financial markets, subjecting it to intricate simulations of trading behaviors. We are optimistic about the potential of quantum optimization to enhance our simulations beyond the capabilities of classical supercomputing technologies. Given that financial markets are constantly changing, we develop AI algorithms that adapt and learn in real-time, allowing us to discover relationships between various financial assets, classes, and markets. The intersection of neuroscience-inspired models, quantum algorithms, and machine learning in systematic trading remains a largely untapped area, presenting an exciting opportunity for future exploration and development. By pushing the boundaries of current methodologies, we aim to redefine how trading strategies are formulated and executed in this ever-evolving landscape.
  • 11
    ChatGPT Pro Reviews
    As artificial intelligence continues to evolve, its ability to tackle more intricate and vital challenges will expand, necessitating a greater computational power to support these advancements. The ChatGPT Pro subscription, priced at $200 per month, offers extensive access to OpenAI's premier models and tools, including unrestricted use of the advanced OpenAI o1 model, o1-mini, GPT-4o, and Advanced Voice features. This subscription also grants users access to the o1 pro mode, an enhanced version of o1 that utilizes increased computational resources to deliver superior answers to more challenging inquiries. Looking ahead, we anticipate the introduction of even more robust, resource-demanding productivity tools within this subscription plan. With ChatGPT Pro, users benefit from a variant of our most sophisticated model capable of extended reasoning, yielding the most dependable responses. External expert evaluations have shown that o1 pro mode consistently generates more accurate and thorough responses, particularly excelling in fields such as data science, programming, and legal case analysis, thereby solidifying its value for professional use. In addition, the commitment to ongoing improvements ensures that subscribers will receive continual updates that enhance their experience and capabilities.
  • 12
    ChatGPT Enterprise Reviews
    Experience unparalleled security and privacy along with the most advanced iteration of ChatGPT to date. 1. Customer data and prompts are excluded from model training processes. 2. Data is securely encrypted both at rest using AES-256 and during transit with TLS 1.2 or higher. 3. Compliance with SOC 2 standards is ensured. 4. A dedicated admin console simplifies bulk management of members. 5. Features like SSO and Domain Verification enhance security. 6. An analytics dashboard provides insights into usage patterns. 7. Users enjoy unlimited, high-speed access to GPT-4 alongside Advanced Data Analysis capabilities*. 8. With 32k token context windows, you can input four times longer texts and retain memory. 9. Easily shareable chat templates facilitate collaboration within your organization. 10. This comprehensive suite of features ensures that your team operates seamlessly and securely.
  • 13
    Cogniac Reviews
    Cogniac offers a no-code platform that empowers organizations to harness the cutting-edge advancements in Artificial Intelligence (AI) and convolutional neural networks, resulting in exceptional operational efficiency. This AI-based machine vision system allows enterprise clients to meet the benchmarks of Industry 4.0 through effective visual data management and enhanced automation. By facilitating smart, ongoing improvements, Cogniac supports the operational teams within organizations. Designed with non-technical users in mind, the Cogniac interface combines ease of use with a drag-and-drop functionality, enabling subject matter experts to concentrate on high-value tasks. With its user-friendly approach, Cogniac's platform can detect defects using just 100 labeled images. After training on a dataset of 25 approved and 75 defective images, the Cogniac AI quickly achieves performance levels comparable to that of a human expert, often within hours after initial setup, thereby streamlining processes significantly for its users. As a result, organizations can not only enhance their efficiency but also make data-driven decisions with greater confidence.
  • 14
    Whisper Reviews
    We have developed and are releasing an open-source neural network named Whisper, which achieves levels of accuracy and resilience in English speech recognition that are comparable to human performance. This automatic speech recognition (ASR) system is trained on an extensive dataset comprising 680,000 hours of multilingual and multitask supervised information gathered from online sources. Our research demonstrates that leveraging such a comprehensive and varied dataset significantly enhances the system's capability to handle different accents, ambient noise, and specialized terminology. Additionally, Whisper facilitates transcription across various languages and provides translation into English from those languages. We are making available both the models and the inference code to support the development of practical applications and to encourage further exploration in the field of robust speech processing. The architecture of Whisper follows a straightforward end-to-end design, utilizing an encoder-decoder Transformer framework. The process begins with dividing the input audio into 30-second segments, which are then transformed into log-Mel spectrograms before being input into the encoder. By making this technology accessible, we aim to foster innovation in speech recognition technologies.
  • 15
    Altair Knowledge Studio Reviews
    Altair is utilized by data scientists and business analysts to extract actionable insights from their datasets. Knowledge Studio offers a leading, user-friendly machine learning and predictive analytics platform that swiftly visualizes data while providing clear, explainable outcomes without necessitating any coding. As a prominent figure in analytics, Knowledge Studio enhances transparency and automates machine learning processes through features like AutoML and explainable AI, all while allowing users the flexibility to configure and fine-tune their models, thus maintaining control over the building process. The platform fosters collaboration throughout the organization, enabling data professionals to tackle intricate projects in a matter of minutes or hours rather than dragging them out for weeks or months. The results produced are straightforward and easily articulated, allowing stakeholders to grasp the findings effortlessly. Furthermore, the combination of user-friendliness and the automation of various modeling steps empowers data scientists to create an increased number of machine learning models more swiftly than with traditional coding methods or other available tools. This efficiency not only shortens project timelines but also enhances overall productivity across teams.
  • 16
    Oracle Machine Learning Reviews
    Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization.
  • 17
    ScoopML Reviews
    Effortlessly create sophisticated predictive models without the need for mathematics or programming, all in just a few simple clicks. Our comprehensive solution takes you through the entire process, from data cleansing to model construction and prediction generation, ensuring you have everything you need. You can feel secure in your decisions, as we provide insights into the rationale behind AI-driven choices, empowering your business with actionable data insights. Experience the ease of data analytics within minutes, eliminating the necessity for coding. Our streamlined approach allows you to build machine learning algorithms, interpret results, and forecast outcomes with just a single click. Transition from raw data to valuable analytics seamlessly, without writing any code. Just upload your dataset, pose questions in everyday language, and receive the most effective model tailored to your data, which you can then easily share with others. Enhance customer productivity significantly, as we assist companies in harnessing no-code machine learning to elevate their customer experience and satisfaction levels. By simplifying the process, we enable organizations to focus on what truly matters—building strong relationships with their clients.
  • 18
    Emly Labs Reviews
    Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction.
  • 19
    Arize AI Reviews
    Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available.
  • 20
    Kraken Reviews

    Kraken

    Big Squid

    $100 per month
    Kraken caters to a wide range of users, from analysts to data scientists, by providing a user-friendly, no-code automated machine learning platform. It is designed to streamline and automate various data science processes, including data preparation, cleaning, algorithm selection, model training, and deployment. With a focus on making these tasks accessible, Kraken is particularly beneficial for analysts and engineers who may have some experience in data analysis. The platform’s intuitive, no-code interface and integrated SONAR© training empower users to evolve into citizen data scientists effortlessly. For data scientists, advanced functionalities enhance productivity and efficiency. Whether your routine involves using Excel or flat files for reporting or conducting ad-hoc analysis, Kraken simplifies the model-building process with features like drag-and-drop CSV uploads and an Amazon S3 connector. Additionally, the Data Connectors in Kraken enable seamless integration with various data warehouses, business intelligence tools, and cloud storage solutions, ensuring that users can work with their preferred data sources effortlessly. This versatility makes Kraken an indispensable tool for anyone looking to leverage machine learning without requiring extensive coding knowledge.
  • 21
    JADBio AutoML Reviews
    JADBio is an automated machine learning platform that uses JADBio's state-of-the art technology without any programming. It solves many open problems in machine-learning with its innovative algorithms. It is easy to use and can perform sophisticated and accurate machine learning analyses, even if you don't know any math, statistics or coding. It was specifically designed for life science data, particularly molecular data. It can handle the unique molecular data issues such as low sample sizes and high numbers of measured quantities, which could reach into the millions. It is essential for life scientists to identify the biomarkers and features that are predictive and important. They also need to know their roles and how they can help them understand the molecular mechanisms. Knowledge discovery is often more important that a predictive model. JADBio focuses on feature selection, and its interpretation.
  • 22
    Amazon SageMaker Model Monitor Reviews
    Amazon SageMaker Model Monitor enables users to choose which data to observe and assess without any coding requirements. It provides a selection of data types, including prediction outputs, while also capturing relevant metadata such as timestamps, model identifiers, and endpoints, allowing for comprehensive analysis of model predictions in relation to this metadata. Users can adjust the data capture sampling rate as a percentage of total traffic, particularly beneficial for high-volume real-time predictions, with all captured data securely stored in their designated Amazon S3 bucket. Additionally, the data can be encrypted, and users have the ability to set up fine-grained security measures, establish data retention guidelines, and implement access control protocols to ensure secure data handling. Amazon SageMaker Model Monitor also includes built-in analytical capabilities, utilizing statistical rules to identify shifts in data and variations in model performance. Moreover, users have the flexibility to create custom rules and define specific thresholds for each of those rules, enhancing the monitoring process further. This level of customization allows for a tailored monitoring experience that can adapt to varying project requirements and objectives.
  • 23
    Metacoder Reviews

    Metacoder

    Wazoo Mobile Technologies LLC

    $89 per user/month
    Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data.
  • 24
    Google Cloud AutoML Reviews
    Cloud AutoML represents a collection of machine learning tools that allow developers with minimal expertise in the field to create tailored models that meet their specific business requirements. This technology harnesses Google's advanced transfer learning and neural architecture search methodologies. By utilizing over a decade of exclusive research advancements from Google, Cloud AutoML enables your machine learning models to achieve enhanced accuracy and quicker performance. With its user-friendly graphical interface, you can effortlessly train, assess, refine, and launch models using your own data. In just a few minutes, you can develop a personalized machine learning model. Additionally, Google’s human labeling service offers a dedicated team to assist in annotating or refining your data labels, ensuring that your models are trained on top-notch data for optimal results. This combination of advanced technology and user support makes Cloud AutoML an accessible option for businesses looking to leverage machine learning.
  • 25
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 26
    Snitch AI Reviews

    Snitch AI

    Snitch AI

    $1,995 per year
    Streamlining quality assurance for machine learning, Snitch cuts through the clutter to highlight the most valuable insights for enhancing your models. It allows you to monitor performance metrics that extend beyond mere accuracy through comprehensive dashboards and analytical tools. You can pinpoint issues within your data pipeline and recognize distribution changes before they impact your predictions. Once deployed, maintain your model in production while gaining insight into its performance and data throughout its lifecycle. Enjoy flexibility with your data security, whether in the cloud, on-premises, private cloud, or hybrid environments, while choosing your preferred installation method for Snitch. Seamlessly integrate Snitch into your existing MLops framework and continue using your favorite tools! Our installation process is designed for quick setup, ensuring that learning and operating the product are straightforward and efficient. Remember, accuracy alone can be deceptive; therefore, it’s crucial to assess your models for robustness and feature significance before launch. Obtain actionable insights that will help refine your models, and make comparisons with historical metrics and your models' established baselines to drive continuous improvement. This comprehensive approach not only bolsters performance but also fosters a deeper understanding of your machine learning processes.
  • 27
    Sixgill Sense Reviews
    The entire process of machine learning and computer vision is streamlined and expedited through a single no-code platform. Sense empowers users to create and implement AI IoT solutions across various environments, whether in the cloud, at the edge, or on-premises. Discover how Sense delivers ease, consistency, and transparency for AI/ML teams, providing robust capabilities for machine learning engineers while remaining accessible for subject matter experts. With Sense Data Annotation, you can enhance your machine learning models by efficiently labeling video and image data, ensuring the creation of high-quality training datasets. The platform also features one-touch labeling integration, promoting ongoing machine learning at the edge and simplifying the management of all your AI applications, thereby maximizing efficiency and effectiveness. This comprehensive approach makes Sense an invaluable tool for a wide range of users, regardless of their technical background.
  • 28
    Oracle Data Science Reviews
    A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making.
  • 29
    Orange Reviews

    Orange

    University of Ljubljana

    Utilize open-source machine learning tools and data visualization techniques to create dynamic data analysis workflows in a visual format, supported by a broad and varied collection of resources. Conduct straightforward data assessments accompanied by insightful visual representations, and investigate statistical distributions through box plots and scatter plots; for more complex inquiries, utilize decision trees, hierarchical clustering, heatmaps, multidimensional scaling, and linear projections. Even intricate multidimensional datasets can be effectively represented in 2D, particularly through smart attribute selection and ranking methods. Engage in interactive data exploration for swift qualitative analysis, enhanced by clear visual displays. The user-friendly graphic interface enables a focus on exploratory data analysis rather than programming, while intelligent defaults facilitate quick prototyping of data workflows. Simply position widgets on your canvas, link them together, import your datasets, and extract valuable insights! When it comes to teaching data mining concepts, we prefer to demonstrate rather than merely describe, and Orange excels in making this approach effective and engaging. The platform not only simplifies the process but also enriches the learning experience for users at all levels.
  • 30
    expoze.io Reviews

    expoze.io

    alpha.one

    €19.99/month
    We are bad at predicting what will capture our attention. Eye-tracking is helpful, but it is expensive and time-consuming. That’s why we created expoze.io. An online attention prediction platform that validates designs in real-time. Built by leading neuro- and data scientists from Alpha.One. We believe creators make better decisions if they can predict what grabs attention.
  • 31
    NVIDIA Modulus Reviews
    NVIDIA Modulus is an advanced neural network framework that integrates the principles of physics, represented through governing partial differential equations (PDEs), with data to create accurate, parameterized surrogate models that operate with near-instantaneous latency. This framework is ideal for those venturing into AI-enhanced physics challenges or for those crafting digital twin models to navigate intricate non-linear, multi-physics systems, offering robust support throughout the process. It provides essential components for constructing physics-based machine learning surrogate models that effectively merge physics principles with data insights. Its versatility ensures applicability across various fields, including engineering simulations and life sciences, while accommodating both forward simulations and inverse/data assimilation tasks. Furthermore, NVIDIA Modulus enables parameterized representations of systems that can tackle multiple scenarios in real time, allowing users to train offline once and subsequently perform real-time inference repeatedly. As such, it empowers researchers and engineers to explore innovative solutions across a spectrum of complex problems with unprecedented efficiency.
  • 32
    NVIDIA DIGITS Reviews
    The NVIDIA Deep Learning GPU Training System (DIGITS) empowers engineers and data scientists by making deep learning accessible and efficient. With DIGITS, users can swiftly train highly precise deep neural networks (DNNs) tailored for tasks like image classification, segmentation, and object detection. It streamlines essential deep learning processes, including data management, neural network design, multi-GPU training, real-time performance monitoring through advanced visualizations, and selecting optimal models for deployment from the results browser. The interactive nature of DIGITS allows data scientists to concentrate on model design and training instead of getting bogged down with programming and debugging. Users can train models interactively with TensorFlow while also visualizing the model architecture via TensorBoard. Furthermore, DIGITS supports the integration of custom plug-ins, facilitating the importation of specialized data formats such as DICOM, commonly utilized in medical imaging. This comprehensive approach ensures that engineers can maximize their productivity while leveraging advanced deep learning techniques.
  • 33
    ChatGPT Reviews
    ChatGPT by OpenAI is a versatile AI conversational platform that provides assistance in writing, learning, brainstorming, code generation, and problem-solving across a wide range of topics. Available for free with optional Plus and Pro subscription plans, it supports real-time text and voice interactions on web browsers and mobile apps. Users can leverage ChatGPT to create content, summarize meetings, debug code, analyze data, and even generate images using integrated tools like DALL·E 3. The platform is accessible via desktop and mobile devices and offers personalized workflows through custom GPTs and projects. Advanced plans unlock deeper research capabilities, extended limits, and access to cutting-edge AI models like GPT-4o and OpenAI o1 pro mode. ChatGPT integrates search capabilities for real-time information and enables collaboration through features like Canvas for project editing. It caters to students, professionals, hobbyists, and developers seeking efficient, AI-driven support. OpenAI continually updates ChatGPT with new tools and enhanced usability.
  • 34
    ConvNetJS Reviews
    ConvNetJS is a JavaScript library designed for training deep learning models, specifically neural networks, directly in your web browser. With just a simple tab open, you can start the training process without needing any software installations, compilers, or even GPUs—it's that hassle-free. The library enables users to create and implement neural networks using JavaScript and was initially developed by @karpathy, but it has since been enhanced through community contributions, which are greatly encouraged. For those who want a quick and easy way to access the library without delving into development, you can download the minified version via the link to convnet-min.js. Alternatively, you can opt to get the latest version from GitHub, where the file you'll likely want is build/convnet-min.js, which includes the complete library. To get started, simply create a basic index.html file in a designated folder and place build/convnet-min.js in the same directory to begin experimenting with deep learning in your browser. This approach allows anyone, regardless of their technical background, to engage with neural networks effortlessly.
  • 35
    Neuralhub Reviews
    Neuralhub is a platform designed to streamline the process of working with neural networks, catering to AI enthusiasts, researchers, and engineers who wish to innovate and experiment in the field of artificial intelligence. Our mission goes beyond merely offering tools; we are dedicated to fostering a community where collaboration and knowledge sharing thrive. By unifying tools, research, and models within a single collaborative environment, we strive to make deep learning more accessible and manageable for everyone involved. Users can either create a neural network from the ground up or explore our extensive library filled with standard network components, architectures, cutting-edge research, and pre-trained models, allowing for personalized experimentation and development. With just one click, you can construct your neural network while gaining a clear visual representation and interaction capabilities with each component. Additionally, effortlessly adjust hyperparameters like epochs, features, and labels to refine your model, ensuring a tailored experience that enhances your understanding of neural networks. This platform not only simplifies the technical aspects but also encourages creativity and innovation in AI development.
  • 36
    Caffe Reviews
    Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios.
  • 37
    YandexART Reviews
    YandexART, a diffusion neural net by Yandex, is designed for image and videos creation. This new neural model is a global leader in image generation quality among generative models. It is integrated into Yandex's services, such as Yandex Business or Shedevrum. It generates images and video using the cascade diffusion technique. This updated version of the neural network is already operational in the Shedevrum app, improving user experiences. YandexART, the engine behind Shedevrum, boasts a massive scale with 5 billion parameters. It was trained on a dataset of 330,000,000 images and their corresponding text descriptions. Shedevrum consistently produces high-quality content through the combination of a refined dataset with a proprietary text encoding algorithm and reinforcement learning.
  • 38
    GPT-4o Reviews
    GPT-4o, with the "o" denoting "omni," represents a significant advancement in the realm of human-computer interaction by accommodating various input types such as text, audio, images, and video, while also producing outputs across these same formats. Its capability to process audio inputs allows for responses in as little as 232 milliseconds, averaging 320 milliseconds, which closely resembles the response times seen in human conversations. In terms of performance, it maintains the efficiency of GPT-4 Turbo for English text and coding while showing marked enhancements in handling text in other languages, all while operating at a much faster pace and at a cost that is 50% lower via the API. Furthermore, GPT-4o excels in its ability to comprehend vision and audio, surpassing the capabilities of its predecessors, making it a powerful tool for multi-modal interactions. This innovative model not only streamlines communication but also broadens the possibilities for applications in diverse fields.
  • 39
    Fabric for Deep Learning (FfDL) Reviews
    Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
  • 40
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 41
    DataMelt Reviews
    DataMelt, or "DMelt", is an environment for numeric computations, data analysis, data mining and computational statistics. DataMelt allows you to plot functions and data in 2D or 3D, perform statistical testing, data mining, data analysis, numeric computations and function minimization. It also solves systems of linear and differential equations. There are also options for symbolic, non-linear, and linear regression. Java API integrates neural networks and data-manipulation techniques using various data-manipulation algorithms. Support is provided for elements of symbolic computations using Octave/Matlab programming. DataMelt provides a Java platform-based computational environment. It can be used on different operating systems and programming languages. It is not limited to one programming language, unlike other statistical programs. This software combines Java, the most widely used enterprise language in the world, with the most popular data science scripting languages, Jython (Python), Groovy and JRuby.
  • 42
    SquareML Reviews
    SquareML is an innovative platform that eliminates the need for coding, making advanced data analytics and predictive modeling accessible to a wider audience, especially within the healthcare field. It empowers users with varying levels of technical ability to utilize machine learning tools without requiring in-depth programming skills. This platform excels in aggregating data from a range of sources, such as electronic health records, claims databases, medical devices, and health information exchanges. Among its standout features are a user-friendly data science lifecycle, generative AI models tailored for healthcare needs, the ability to convert unstructured data, a variety of machine learning models to forecast patient outcomes and disease advancement, and a collection of pre-existing models and algorithms. Additionally, it facilitates smooth integration with multiple healthcare data sources. By providing AI-driven insights, SquareML aims to simplify data workflows, elevate diagnostic precision, and ultimately enhance patient care outcomes, thereby fostering a healthier future for all.
  • 43
    TruEra Reviews
    An advanced machine learning monitoring system is designed to simplify the oversight and troubleshooting of numerous models. With unmatched explainability accuracy and exclusive analytical capabilities, data scientists can effectively navigate challenges without encountering false alarms or dead ends, enabling them to swiftly tackle critical issues. This ensures that your machine learning models remain fine-tuned, ultimately optimizing your business performance. TruEra's solution is powered by a state-of-the-art explainability engine that has been honed through years of meticulous research and development, showcasing a level of accuracy that surpasses contemporary tools. The enterprise-grade AI explainability technology offered by TruEra stands out in the industry. The foundation of the diagnostic engine is rooted in six years of research at Carnegie Mellon University, resulting in performance that significantly exceeds that of its rivals. The platform's ability to conduct complex sensitivity analyses efficiently allows data scientists as well as business and compliance teams to gain a clear understanding of how and why models generate their predictions, fostering better decision-making processes. Additionally, this robust system not only enhances model performance but also promotes greater trust and transparency in AI-driven outcomes.
  • 44
    Darknet Reviews
    Darknet is a neural network framework that is open-source, developed using C and CUDA. Known for its speed and simplicity in installation, it accommodates both CPU and GPU processing. The source code is available on GitHub, where you can also explore its capabilities further. The installation process is straightforward, requiring only two optional dependencies: OpenCV for enhanced image format support and CUDA for GPU acceleration. While Darknet performs efficiently on CPUs, it boasts a performance increase of approximately 500 times when running on a GPU! To leverage this speed, you'll need an Nvidia GPU alongside the CUDA installation. By default, Darknet utilizes stb_image.h for loading images, but for those seeking compatibility with more obscure formats like CMYK jpegs, OpenCV can be employed. Additionally, OpenCV provides the functionality to visualize images and detections in real-time without needing to save them. Darknet supports the classification of images using well-known models such as ResNet and ResNeXt, and it has become quite popular for employing recurrent neural networks in applications related to time-series data and natural language processing. Whether you're a seasoned developer or a newcomer, Darknet offers an accessible way to implement advanced neural network solutions.
  • 45
    SensiML Analytics Studio Reviews
    The SensiML Analytics Toolkit enables the swift development of smart IoT sensor devices while simplifying the complexities of data science. It focuses on creating compact algorithms designed to run on small IoT endpoints instead of relying on cloud processing. By gathering precise, traceable, and version-controlled datasets, it enhances data integrity. The toolkit employs advanced AutoML code generation to facilitate the rapid creation of autonomous device code. Users can select their preferred interface and level of AI expertise while maintaining full oversight of all algorithm components. It also supports the development of edge tuning models that adapt behavior based on incoming data over time. The SensiML Analytics Toolkit automates every step necessary for crafting optimized AI recognition code for IoT sensors. Utilizing an expanding library of sophisticated machine learning and AI algorithms, the overall workflow produces code capable of learning from new data, whether during development or after deployment. Moreover, non-invasive applications for rapid disease screening that intelligently classify multiple bio-sensing inputs serve as essential tools for aiding healthcare decision-making processes. This capability positions the toolkit as an invaluable resource in both tech and healthcare sectors.