RunPod
RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
Learn more
Ango Hub
Ango Hub is an all-in-one, quality-oriented data annotation platform that AI teams can use. Ango Hub is available on-premise and in the cloud. It allows AI teams and their data annotation workforces to quickly and efficiently annotate their data without compromising quality.
Ango Hub is the only data annotation platform that focuses on quality. It features features that enhance the quality of your annotations. These include a centralized labeling system, a real time issue system, review workflows and sample label libraries. There is also consensus up to 30 on the same asset.
Ango Hub is versatile as well. It supports all data types that your team might require, including image, audio, text and native PDF. There are nearly twenty different labeling tools that you can use to annotate data. Some of these tools are unique to Ango hub, such as rotated bounding box, unlimited conditional questions, label relations and table-based labels for more complicated labeling tasks.
Learn more
NVIDIA Isaac GR00T
NVIDIA's Isaac GR00T (Generalist Robot 00 Technology) serves as an innovative research platform aimed at the creation of versatile humanoid robot foundation models and their associated data pipelines. This platform features models such as Isaac GR00T-N, alongside synthetic motion blueprints, GR00T-Mimic for enhancing demonstrations, and GR00T-Dreams, which generates novel synthetic trajectories to expedite the progress in humanoid robotics. A recent highlight is the introduction of the open-source Isaac GR00T N1 foundation model, characterized by a dual-system cognitive structure that includes a rapid-response “System 1” action model and a language-capable, deliberative “System 2” reasoning model. The latest iteration, GR00T N1.5, brings forth significant upgrades, including enhanced vision-language grounding, improved following of language commands, increased adaptability with few-shot learning, and support for new robot embodiments. With the integration of tools like Isaac Sim, Lab, and Omniverse, GR00T enables developers to effectively train, simulate, post-train, and deploy adaptable humanoid agents utilizing a blend of real and synthetic data. This comprehensive approach not only accelerates robotics research but also opens up new avenues for innovation in humanoid robot applications.
Learn more
NVIDIA Isaac Lab
NVIDIA Isaac Lab is an open-source robot learning framework that utilizes GPU acceleration and is built upon Isaac Sim, aimed at streamlining and integrating various robotics research processes such as reinforcement learning, imitation learning, and motion planning. By harnessing highly realistic sensor and physics simulations, it enables the effective training of embodied agents and offers a wide range of pre-configured environments that include manipulators, quadrupeds, and humanoids, while supporting over 30 benchmark tasks and seamless integration with well-known RL libraries, including RL Games, Stable Baselines, RSL RL, and SKRL. The design of Isaac Lab is modular and configuration-driven, which allows developers to effortlessly create, adjust, and expand their learning environments; it also provides the ability to gather demonstrations through peripherals like gamepads and keyboards, as well as facilitating the use of custom actuator models to improve sim-to-real transfer processes. Furthermore, the framework is designed to operate effectively in both local and cloud environments, ensuring that compute resources can be scaled flexibly to meet varying demands. This comprehensive approach not only enhances productivity in robotics research but also opens new avenues for innovation in robotic applications.
Learn more