Qloo
Qloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
KamuSEO
KamuSEO serves as a comprehensive tool for visitor and SEO analytics, allowing you to examine both your own site's traffic and the information of any other website. This platform can thoroughly evaluate various metrics, including Alexa rankings, SimilarWeb insights, WHOIS data, social media engagement, Moz scores, search engine indexing, Google PageRank, IP analysis, and malware checks. Developers can easily integrate its functionalities into other applications through a native API, enhancing its usability. By simply inputting a domain name, users can generate a JavaScript code that can be embedded within their web pages to receive daily reports on visitor statistics. Additionally, KamuSEO offers a range of bonus utility tools, such as an email encoder/decoder, meta tag generator, tag generator, plagiarism checker, valid email verifier, duplicate email filter, and URL encoder/decoder, making it a versatile resource for webmasters. With such a diverse array of features, KamuSEO stands out as an essential tool for anyone looking to optimize their online presence effectively.
Learn more
Whisper
We have developed and are releasing an open-source neural network named Whisper, which achieves levels of accuracy and resilience in English speech recognition that are comparable to human performance. This automatic speech recognition (ASR) system is trained on an extensive dataset comprising 680,000 hours of multilingual and multitask supervised information gathered from online sources. Our research demonstrates that leveraging such a comprehensive and varied dataset significantly enhances the system's capability to handle different accents, ambient noise, and specialized terminology. Additionally, Whisper facilitates transcription across various languages and provides translation into English from those languages. We are making available both the models and the inference code to support the development of practical applications and to encourage further exploration in the field of robust speech processing. The architecture of Whisper follows a straightforward end-to-end design, utilizing an encoder-decoder Transformer framework. The process begins with dividing the input audio into 30-second segments, which are then transformed into log-Mel spectrograms before being input into the encoder. By making this technology accessible, we aim to foster innovation in speech recognition technologies.
Learn more