LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
DeepSeek-V2
DeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence.
Learn more
Magistral
Magistral is the inaugural language model family from Mistral AI that emphasizes reasoning, offered in two variants: Magistral Small, a 24 billion parameter open-weight model accessible under Apache 2.0 via Hugging Face, and Magistral Medium, a more robust enterprise-grade version that can be accessed through Mistral's API, the Le Chat platform, and various major cloud marketplaces. Designed for specific domains, it excels in transparent, multilingual reasoning across diverse tasks such as mathematics, physics, structured calculations, programmatic logic, decision trees, and rule-based systems, generating outputs that follow a chain of thought in the user's preferred language, which can be easily tracked and validated. This release signifies a transition towards more compact yet highly effective transparent AI reasoning capabilities. Currently, Magistral Medium is in preview on platforms including Le Chat, the API, SageMaker, WatsonX, Azure AI, and Google Cloud Marketplace. Its design is particularly suited for general-purpose applications that necessitate extended thought processes and improved accuracy compared to traditional non-reasoning language models. The introduction of Magistral represents a significant advancement in the pursuit of sophisticated reasoning in AI applications.
Learn more