DataHub
DataHub is a versatile open-source metadata platform crafted to enhance data discovery, observability, and governance within various data environments. It empowers organizations to easily find reliable data, providing customized experiences for users while avoiding disruptions through precise lineage tracking at both the cross-platform and column levels. By offering a holistic view of business, operational, and technical contexts, DataHub instills trust in your data repository. The platform features automated data quality assessments along with AI-driven anomaly detection, alerting teams to emerging issues and consolidating incident management. With comprehensive lineage information, documentation, and ownership details, DataHub streamlines the resolution of problems. Furthermore, it automates governance processes by classifying evolving assets, significantly reducing manual effort with GenAI documentation, AI-based classification, and intelligent propagation mechanisms. Additionally, DataHub's flexible architecture accommodates more than 70 native integrations, making it a robust choice for organizations seeking to optimize their data ecosystems. This makes it an invaluable tool for any organization looking to enhance their data management capabilities.
Learn more
D&B Connect
Your first-party data can be used to unlock its full potential. D&B Connect is a self-service, customizable master data management solution that can scale. D&B Connect's family of products can help you eliminate data silos and bring all your data together. Our database contains hundreds of millions records that can be used to enrich, cleanse, and benchmark your data. This creates a single, interconnected source of truth that empowers teams to make better business decisions. With data you can trust, you can drive growth and lower risk. Your sales and marketing teams will be able to align territories with a complete view of account relationships if they have a solid data foundation. Reduce internal conflict and confusion caused by incomplete or poor data. Segmentation and targeting should be strengthened. Personalization and quality of marketing-sourced leads can be improved. Increase accuracy in reporting and ROI analysis.
Learn more
DataBuck
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
Learn more
datuum.ai
Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience.
At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists.
By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes.
Learn more