Teradata VantageCloud
Teradata VantageCloud: Open, Scalable Cloud Analytics for AI
VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable.
Learn more
Google Cloud BigQuery
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises.
Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
Learn more
Google Colab
Google Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows.
Learn more
Hex
Hex unites the finest features of notebooks, business intelligence, and documentation into a cohesive and collaborative user interface, establishing itself as a contemporary Data Workspace. It simplifies the process of connecting to various data sources and allows for collaborative analysis via SQL and Python-based notebooks, enabling users to share their findings as interactive data applications and narratives. Upon entering Hex, the Projects page serves as the default landing area, making it easy to access both your own projects and those shared within your workspace. The outline feature offers a streamlined overview of all cells contained in a project's Logic View, where each cell is annotated with the variables it defines. Furthermore, cells that produce visible outputs—such as chart cells, input parameters, and markdown cells—provide a preview of their results. By clicking on any cell within the outline, users can instantly navigate to that specific location in the logic, enhancing the overall efficiency of the workflow. This functionality ensures that collaboration and data exploration are both intuitive and effective.
Learn more