Best Llama Stack Alternatives in 2025
Find the top alternatives to Llama Stack currently available. Compare ratings, reviews, pricing, and features of Llama Stack alternatives in 2025. Slashdot lists the best Llama Stack alternatives on the market that offer competing products that are similar to Llama Stack. Sort through Llama Stack alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
783 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
LlamaIndex
LlamaIndex
LlamaIndex serves as a versatile "data framework" designed to assist in the development of applications powered by large language models (LLMs). It enables the integration of semi-structured data from various APIs, including Slack, Salesforce, and Notion. This straightforward yet adaptable framework facilitates the connection of custom data sources to LLMs, enhancing the capabilities of your applications with essential data tools. By linking your existing data formats—such as APIs, PDFs, documents, and SQL databases—you can effectively utilize them within your LLM applications. Furthermore, you can store and index your data for various applications, ensuring seamless integration with downstream vector storage and database services. LlamaIndex also offers a query interface that allows users to input any prompt related to their data, yielding responses that are enriched with knowledge. It allows for the connection of unstructured data sources, including documents, raw text files, PDFs, videos, and images, while also making it simple to incorporate structured data from sources like Excel or SQL. Additionally, LlamaIndex provides methods for organizing your data through indices and graphs, making it more accessible for use with LLMs, thereby enhancing the overall user experience and expanding the potential applications. -
3
Llama Guard
Meta
Llama Guard is a collaborative open-source safety model created by Meta AI aimed at improving the security of large language models during interactions with humans. It operates as a filtering mechanism for inputs and outputs, categorizing both prompts and replies based on potential safety risks such as toxicity, hate speech, and false information. With training on a meticulously selected dataset, Llama Guard's performance rivals or surpasses that of existing moderation frameworks, including OpenAI's Moderation API and ToxicChat. This model features an instruction-tuned framework that permits developers to tailor its classification system and output styles to cater to specific applications. As a component of Meta's extensive "Purple Llama" project, it integrates both proactive and reactive security measures to ensure the responsible use of generative AI technologies. The availability of the model weights in the public domain invites additional exploration and modifications to address the continually changing landscape of AI safety concerns, fostering innovation and collaboration in the field. This open-access approach not only enhances the community's ability to experiment but also promotes a shared commitment to ethical AI development. -
4
Llama 3.3
Meta
FreeThe newest version in the Llama series, Llama 3.3, represents a significant advancement in language models aimed at enhancing AI's capabilities in understanding and communication. It boasts improved contextual reasoning, superior language generation, and advanced fine-tuning features aimed at producing exceptionally accurate, human-like responses across a variety of uses. This iteration incorporates a more extensive training dataset, refined algorithms for deeper comprehension, and mitigated biases compared to earlier versions. Llama 3.3 stands out in applications including natural language understanding, creative writing, technical explanations, and multilingual interactions, making it a crucial asset for businesses, developers, and researchers alike. Additionally, its modular architecture facilitates customizable deployment in specific fields, ensuring it remains versatile and high-performing even in large-scale applications. With these enhancements, Llama 3.3 is poised to redefine the standards of AI language models. -
5
Code Llama
Meta
FreeCode Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively. -
6
LlamaCloud
LlamaIndex
LlamaCloud, created by LlamaIndex, offers a comprehensive managed solution for the parsing, ingestion, and retrieval of data, empowering businesses to develop and implement AI-powered knowledge applications. This service features a versatile and scalable framework designed to efficiently manage data within Retrieval-Augmented Generation (RAG) contexts. By streamlining the data preparation process for large language model applications, LlamaCloud enables developers to concentrate on crafting business logic rather than dealing with data management challenges. Furthermore, this platform enhances the overall efficiency of AI project development. -
7
Llama 3
Meta
FreeWe have incorporated Llama 3 into Meta AI, our intelligent assistant that enhances how individuals accomplish tasks, innovate, and engage with Meta AI. By utilizing Meta AI for coding and problem-solving, you can experience Llama 3's capabilities first-hand. Whether you are creating agents or other AI-driven applications, Llama 3, available in both 8B and 70B versions, will provide the necessary capabilities and flexibility to bring your ideas to fruition. With the launch of Llama 3, we have also revised our Responsible Use Guide (RUG) to offer extensive guidance on the ethical development of LLMs. Our system-focused strategy encompasses enhancements to our trust and safety mechanisms, including Llama Guard 2, which is designed to align with the newly introduced taxonomy from MLCommons, broadening its scope to cover a wider array of safety categories, alongside code shield and Cybersec Eval 2. Additionally, these advancements aim to ensure a safer and more responsible use of AI technologies in various applications. -
8
NVIDIA NeMo Guardrails
NVIDIA
NVIDIA NeMo Guardrails serves as an open-source toolkit aimed at improving the safety, security, and compliance of conversational applications powered by large language models. This toolkit empowers developers to establish, coordinate, and enforce various AI guardrails, thereby ensuring that interactions with generative AI remain precise, suitable, and relevant. Utilizing Colang, a dedicated language for crafting adaptable dialogue flows, it integrates effortlessly with renowned AI development frameworks such as LangChain and LlamaIndex. NeMo Guardrails provides a range of functionalities, including content safety measures, topic regulation, detection of personally identifiable information, enforcement of retrieval-augmented generation, and prevention of jailbreak scenarios. Furthermore, the newly launched NeMo Guardrails microservice streamlines rail orchestration, offering API-based interaction along with tools that facilitate improved management and maintenance of guardrails. This advancement signifies a critical step toward more responsible AI deployment in conversational contexts. -
9
Chainlit
Chainlit
Chainlit is a versatile open-source Python library that accelerates the creation of production-ready conversational AI solutions. By utilizing Chainlit, developers can swiftly design and implement chat interfaces in mere minutes rather than spending weeks on development. The platform seamlessly integrates with leading AI tools and frameworks such as OpenAI, LangChain, and LlamaIndex, facilitating diverse application development. Among its notable features, Chainlit supports multimodal functionalities, allowing users to handle images, PDFs, and various media formats to boost efficiency. Additionally, it includes strong authentication mechanisms compatible with providers like Okta, Azure AD, and Google, enhancing security measures. The Prompt Playground feature allows developers to refine prompts contextually, fine-tuning templates, variables, and LLM settings for superior outcomes. To ensure transparency and effective monitoring, Chainlit provides real-time insights into prompts, completions, and usage analytics, fostering reliable and efficient operations in the realm of language models. Overall, Chainlit significantly streamlines the process of building conversational AI applications, making it a valuable tool for developers in this rapidly evolving field. -
10
Flowise
Flowise AI
FreeFlowise is a versatile open-source platform that simplifies the creation of tailored Large Language Model (LLM) applications using an intuitive drag-and-drop interface designed for low-code development. This platform accommodates connections with multiple LLMs, such as LangChain and LlamaIndex, and boasts more than 100 integrations to support the building of AI agents and orchestration workflows. Additionally, Flowise offers a variety of APIs, SDKs, and embedded widgets that enable smooth integration into pre-existing systems, ensuring compatibility across different platforms, including deployment in isolated environments using local LLMs and vector databases. As a result, developers can efficiently create and manage sophisticated AI solutions with minimal technical barriers. -
11
TinyLlama
TinyLlama
FreeThe TinyLlama initiative seeks to pretrain a Llama model with 1.1 billion parameters using a dataset of 3 trillion tokens. With the right optimizations, this ambitious task can be completed in a mere 90 days, utilizing 16 A100-40G GPUs. We have maintained the same architecture and tokenizer as Llama 2, ensuring that TinyLlama is compatible with various open-source projects that are based on Llama. Additionally, the model's compact design, consisting of just 1.1 billion parameters, makes it suitable for numerous applications that require limited computational resources and memory. This versatility enables developers to integrate TinyLlama seamlessly into their existing frameworks and workflows. -
12
Llama 4 Behemoth
Meta
FreeLlama 4 Behemoth, with 288 billion active parameters, is Meta's flagship AI model, setting new standards for multimodal performance. Outpacing its predecessors like GPT-4.5 and Claude Sonnet 3.7, it leads the field in STEM benchmarks, offering cutting-edge results in tasks such as problem-solving and reasoning. Designed as the teacher model for the Llama 4 series, Behemoth drives significant improvements in model quality and efficiency through distillation. Although still in development, Llama 4 Behemoth is shaping the future of AI with its unparalleled intelligence, particularly in math, image, and multilingual tasks. -
13
Llama
Meta
Llama (Large Language Model Meta AI) stands as a cutting-edge foundational large language model aimed at helping researchers push the boundaries of their work within this area of artificial intelligence. By providing smaller yet highly effective models like Llama, the research community can benefit even if they lack extensive infrastructure, thus promoting greater accessibility in this dynamic and rapidly evolving domain. Creating smaller foundational models such as Llama is advantageous in the landscape of large language models, as it demands significantly reduced computational power and resources, facilitating the testing of innovative methods, confirming existing research, and investigating new applications. These foundational models leverage extensive unlabeled datasets, making them exceptionally suitable for fine-tuning across a range of tasks. We are offering Llama in multiple sizes (7B, 13B, 33B, and 65B parameters), accompanied by a detailed Llama model card that outlines our development process while adhering to our commitment to Responsible AI principles. By making these resources available, we aim to empower a broader segment of the research community to engage with and contribute to advancements in AI. -
14
ConfidentialMind
ConfidentialMind
We have taken the initiative to bundle and set up all necessary components for crafting solutions and seamlessly integrating LLMs into your organizational workflows. With ConfidentialMind, you can immediately get started. It provides an endpoint for the most advanced open-source LLMs, such as Llama-2, effectively transforming it into an internal LLM API. Envision having ChatGPT operating within your personal cloud environment. This represents the utmost in security solutions available. It connects with the APIs of leading hosted LLM providers, including Azure OpenAI, AWS Bedrock, and IBM, ensuring comprehensive integration. Additionally, ConfidentialMind features a playground UI built on Streamlit, which offers a variety of LLM-driven productivity tools tailored for your organization, including writing assistants and document analysis tools. It also comes with a vector database, essential for efficiently sifting through extensive knowledge repositories containing thousands of documents. Furthermore, it empowers you to manage access to the solutions developed by your team and regulate what information the LLMs can access, enhancing data security and control. With these capabilities, you can drive innovation while ensuring compliance and safety within your business operations. -
15
OpenPipe
OpenPipe
$1.20 per 1M tokensOpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features. -
16
Defense Llama
Scale AI
Scale AI is excited to introduce Defense Llama, a specialized Large Language Model (LLM) developed from Meta’s Llama 3, tailored specifically to enhance American national security initiatives. Designed for exclusive use within controlled U.S. government settings through Scale Donovan, Defense Llama equips our military personnel and national security experts with the generative AI tools needed for various applications, including the planning of military operations and the analysis of adversary weaknesses. With its training grounded in a comprehensive array of materials, including military doctrines and international humanitarian laws, Defense Llama adheres to the Department of Defense (DoD) guidelines on armed conflict and aligns with the DoD’s Ethical Principles for Artificial Intelligence. This structured foundation allows the model to deliver precise, relevant, and insightful responses tailored to the needs of its users. By providing a secure and efficient generative AI platform, Scale is committed to enhancing the capabilities of U.S. defense personnel in their critical missions. The integration of such technology marks a significant advancement in how national security objectives can be achieved. -
17
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
18
Dify
Dify
Dify serves as an open-source platform aimed at enhancing the efficiency of developing and managing generative AI applications. It includes a wide array of tools, such as a user-friendly orchestration studio for designing visual workflows, a Prompt IDE for testing and refining prompts, and advanced LLMOps features for the oversight and enhancement of large language models. With support for integration with multiple LLMs, including OpenAI's GPT series and open-source solutions like Llama, Dify offers developers the versatility to choose models that align with their specific requirements. Furthermore, its Backend-as-a-Service (BaaS) capabilities allow for the effortless integration of AI features into existing enterprise infrastructures, promoting the development of AI-driven chatbots, tools for document summarization, and virtual assistants. This combination of tools and features positions Dify as a robust solution for enterprises looking to leverage generative AI technologies effectively. -
19
OpenLLaMA
OpenLLaMA
FreeOpenLLaMA is an openly licensed reproduction of Meta AI's LLaMA 7B, developed using the RedPajama dataset. The model weights we offer can seamlessly replace the LLaMA 7B in current applications. Additionally, we have created a more compact 3B version of the LLaMA model for those seeking a lighter alternative. This provides users with more flexibility in choosing the right model for their specific needs. -
20
DeepEval
Confident AI
FreeDeepEval offers an intuitive open-source framework designed for the assessment and testing of large language model systems, similar to what Pytest does but tailored specifically for evaluating LLM outputs. It leverages cutting-edge research to measure various performance metrics, including G-Eval, hallucinations, answer relevancy, and RAGAS, utilizing LLMs and a range of other NLP models that operate directly on your local machine. This tool is versatile enough to support applications developed through methods like RAG, fine-tuning, LangChain, or LlamaIndex. By using DeepEval, you can systematically explore the best hyperparameters to enhance your RAG workflow, mitigate prompt drift, or confidently shift from OpenAI services to self-hosting your Llama2 model. Additionally, the framework features capabilities for synthetic dataset creation using advanced evolutionary techniques and integrates smoothly with well-known frameworks, making it an essential asset for efficient benchmarking and optimization of LLM systems. Its comprehensive nature ensures that developers can maximize the potential of their LLM applications across various contexts. -
21
NVIDIA Llama Nemotron
NVIDIA
The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems. -
22
Roost.ai
Roost.ai
Roost.ai is an advanced software testing platform that utilizes generative AI and prominent large language models such as GPT-4, Gemini, Claude, and Llama3 to automate the creation of unit and API test cases, guaranteeing complete test coverage. The platform integrates effortlessly with popular DevOps tools like GitHub, GitLab, Bitbucket, Azure DevOps, Terraform, and CloudFormation, allowing for automated updates to tests in response to code alterations and pull requests. It accommodates a variety of programming languages, including Java, Go, Python, Node.js, and C#, while also being capable of generating tests for multiple frameworks such as JUnit, TestNG, pytest, and Go's standard testing package. Additionally, Roost.ai enables the on-demand creation of temporary test environments, which simplifies acceptance testing and minimizes the time and resources needed for quality assurance. By automating monotonous testing processes and improving overall test coverage, Roost.ai allows development teams to prioritize innovation and speed up their release cycles, ultimately enhancing productivity and efficiency in software development. This innovative approach to testing not only streamlines workflows but also contributes to higher quality software products. -
23
CerebrasCoder
CerebrasCoder
FreeCerebrasCoder is an open-source platform that allows users to quickly create fully functional applications by harnessing the capabilities of AI technology. Users can effortlessly turn their concepts into applications by just inputting prompts, which significantly simplifies the development process. Utilizing the advanced Llama 3.3-70B language model crafted by Cerebras Systems, CerebrasCoder accelerates the generation of applications. Its design prioritizes user-friendliness, making it accessible for individuals who may lack extensive coding expertise. This innovative tool empowers creativity and enhances productivity for developers at all experience levels. -
24
Literal AI
Literal AI
Literal AI is a collaborative platform crafted to support engineering and product teams in the creation of production-ready Large Language Model (LLM) applications. It features an array of tools focused on observability, evaluation, and analytics, which allows for efficient monitoring, optimization, and integration of different prompt versions. Among its noteworthy functionalities are multimodal logging, which incorporates vision, audio, and video, as well as prompt management that includes versioning and A/B testing features. Additionally, it offers a prompt playground that allows users to experiment with various LLM providers and configurations. Literal AI is designed to integrate effortlessly with a variety of LLM providers and AI frameworks, including OpenAI, LangChain, and LlamaIndex, and comes equipped with SDKs in both Python and TypeScript for straightforward code instrumentation. The platform further facilitates the development of experiments against datasets, promoting ongoing enhancements and minimizing the risk of regressions in LLM applications. With these capabilities, teams can not only streamline their workflows but also foster innovation and ensure high-quality outputs in their projects. -
25
kluster.ai
kluster.ai
$0.15per inputKluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects. -
26
Mistral 7B
Mistral AI
FreeMistral 7B is a language model with 7.3 billion parameters that demonstrates superior performance compared to larger models such as Llama 2 13B on a variety of benchmarks. It utilizes innovative techniques like Grouped-Query Attention (GQA) for improved inference speed and Sliding Window Attention (SWA) to manage lengthy sequences efficiently. Released under the Apache 2.0 license, Mistral 7B is readily available for deployment on different platforms, including both local setups and prominent cloud services. Furthermore, a specialized variant known as Mistral 7B Instruct has shown remarkable capabilities in following instructions, outperforming competitors like Llama 2 13B Chat in specific tasks. This versatility makes Mistral 7B an attractive option for developers and researchers alike. -
27
PygmalionAI
PygmalionAI
FreePygmalionAI is a vibrant community focused on the development of open-source initiatives utilizing EleutherAI's GPT-J 6B and Meta's LLaMA models. Essentially, Pygmalion specializes in crafting AI tailored for engaging conversations and roleplaying. The actively maintained Pygmalion AI model currently features the 7B variant, derived from Meta AI's LLaMA model. Requiring a mere 18GB (or even less) of VRAM, Pygmalion demonstrates superior chat functionality compared to significantly larger language models, all while utilizing relatively limited resources. Our meticulously assembled dataset, rich in high-quality roleplaying content, guarantees that your AI companion will be the perfect partner for roleplaying scenarios. Both the model weights and the training code are entirely open-source, allowing you the freedom to modify and redistribute them for any purpose you desire. Generally, language models, such as Pygmalion, operate on GPUs, as they require swift memory access and substantial processing power to generate coherent text efficiently. As a result, users can expect a smooth and responsive interaction experience when employing Pygmalion's capabilities. -
28
Llama 4 Maverick
Meta
FreeLlama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands. -
29
DefiLlama
DefiLlama
DefiLlama is dedicated to providing precise data while avoiding advertisements or sponsored materials, ensuring transparency in its operations. It features a comprehensive listing of DeFi projects spanning various blockchains. Most of the adapters utilized on DefiLlama are developed and managed by their respective community members, with all modifications organized through the DefiLlama/DefiLlama-Adapters GitHub repository. The platform gathers information on a protocol by invoking specific endpoints or executing blockchain queries. It calculates the Total Value Locked (TVL) of a protocol and presents the results. Currently, our Software Development Kit (SDK) is limited to supporting EVM-compatible chains; therefore, if your project operates on any of these chains, creating an SDK-based adapter is advisable. Conversely, if your project is situated on a different chain, the fetch adapter would be the appropriate solution. An adapter functions as a method that accepts both a timestamp and the block height (specifically on Ethereum), returning the token balances secured within your protocol's smart contracts at that specific moment. This structured approach ensures that users can reliably track and access the necessary data for their DeFi projects. -
30
WebLLM
WebLLM
FreeWebLLM serves as a robust inference engine for language models that operates directly in web browsers, utilizing WebGPU technology to provide hardware acceleration for efficient LLM tasks without needing server support. This platform is fully compatible with the OpenAI API, which allows for smooth incorporation of features such as JSON mode, function-calling capabilities, and streaming functionalities. With native support for a variety of models, including Llama, Phi, Gemma, RedPajama, Mistral, and Qwen, WebLLM proves to be adaptable for a wide range of artificial intelligence applications. Users can easily upload and implement custom models in MLC format, tailoring WebLLM to fit particular requirements and use cases. The integration process is made simple through package managers like NPM and Yarn or via CDN, and it is enhanced by a wealth of examples and a modular architecture that allows for seamless connections with user interface elements. Additionally, the platform's ability to support streaming chat completions facilitates immediate output generation, making it ideal for dynamic applications such as chatbots and virtual assistants, further enriching user interaction. This versatility opens up new possibilities for developers looking to enhance their web applications with advanced AI capabilities. -
31
Falcon 2
Technology Innovation Institute (TII)
FreeFalcon 2 11B is a versatile AI model that is open-source, supports multiple languages, and incorporates multimodal features, particularly excelling in vision-to-language tasks. It outperforms Meta’s Llama 3 8B and matches the capabilities of Google’s Gemma 7B, as validated by the Hugging Face Leaderboard. In the future, the development plan includes adopting a 'Mixture of Experts' strategy aimed at significantly improving the model's functionalities, thereby advancing the frontiers of AI technology even further. This evolution promises to deliver remarkable innovations, solidifying Falcon 2's position in the competitive landscape of artificial intelligence. -
32
Llama 4 Scout
Meta
FreeLlama 4 Scout is an advanced multimodal AI model with 17 billion active parameters, offering industry-leading performance with a 10 million token context length. This enables it to handle complex tasks like multi-document summarization and detailed code reasoning with impressive accuracy. Scout surpasses previous Llama models in both text and image understanding, making it an excellent choice for applications that require a combination of language processing and image analysis. Its powerful capabilities in long-context tasks and image-grounding applications set it apart from other models in its class, providing superior results for a wide range of industries. -
33
Alumnium
Alumnium
FreeAlumnium is an innovative, open-source testing automation tool that employs AI to merge human input with automated testing by converting straightforward language test directives into actionable commands for browsers. It works harmoniously with well-known web automation frameworks such as Selenium and Playwright, enabling software developers and testers to speed up the creation of browser tests while maintaining accuracy and oversight. Supporting any Python-based testing framework, Alumnium capitalizes on advanced language models from leading providers like Anthropic, Google Gemini, OpenAI, and Meta Llama to interpret user instructions and produce browser interactions. Users can craft test scenarios using intuitive commands: "do" for actions, "check" for validations, and "get" for data retrieval from the web page. Additionally, Alumnium references the accessibility tree of the web page and can utilize screenshots when necessary to run tests, thereby ensuring that it works effectively across a range of web applications. This capability not only enhances testing efficiency but also broadens accessibility for diverse users. -
34
VideoLlama
VideoLlama
$5 per 500 creditsVideoLlama is an innovative platform powered by AI that empowers individuals to quickly convert their concepts into visually striking videos in just a matter of minutes, eliminating the need for any prior editing expertise. The process starts with generating a script based on a user’s prompt or a specific URL, followed by the creation of images and voice-overs tailored for various content segments, along with the addition of music and transitions. Catering to both short and long-form videos, the platform simplifies the task of producing content, whether it's a brief 30-second clip or an elaborate 20-minute production. It provides users with initial assets through AI technology while allowing them complete creative control over the final output, making it easy to regenerate video elements with just a click of a button. By managing the intricate details of video editing, VideoLlama lets users concentrate on what truly matters—their content. Furthermore, the platform uses a credit-based model, starting new users off with 500 free credits and offering the flexibility to purchase more as required, thus ensuring that everyone can access its features without upfront costs. This approach not only democratizes video creation but also encourages experimentation and creativity among users of all skill levels. -
35
Falcon Mamba 7B
Technology Innovation Institute (TII)
FreeFalcon Mamba 7B marks a significant milestone as the inaugural open-source State Space Language Model (SSLM), presenting a revolutionary architecture within the Falcon model family. Celebrated as the premier open-source SSLM globally by Hugging Face, it establishes a new standard for efficiency in artificial intelligence. In contrast to conventional transformers, SSLMs require significantly less memory and can produce lengthy text sequences seamlessly without extra resource demands. Falcon Mamba 7B outperforms top transformer models, such as Meta’s Llama 3.1 8B and Mistral’s 7B, demonstrating enhanced capabilities. This breakthrough not only highlights Abu Dhabi’s dedication to pushing the boundaries of AI research but also positions the region as a pivotal player in the global AI landscape. Such advancements are vital for fostering innovation and collaboration in technology. -
36
LongLLaMA
LongLLaMA
FreeThis repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing. -
37
Oumi
Oumi
FreeOumi is an entirely open-source platform that enhances the complete lifecycle of foundation models, encompassing everything from data preparation and training to evaluation and deployment. It facilitates the training and fine-tuning of models with parameter counts ranging from 10 million to an impressive 405 billion, utilizing cutting-edge methodologies such as SFT, LoRA, QLoRA, and DPO. Supporting both text-based and multimodal models, Oumi is compatible with various architectures like Llama, DeepSeek, Qwen, and Phi. The platform also includes tools for data synthesis and curation, allowing users to efficiently create and manage their training datasets. For deployment, Oumi seamlessly integrates with well-known inference engines such as vLLM and SGLang, which optimizes model serving. Additionally, it features thorough evaluation tools across standard benchmarks to accurately measure model performance. Oumi's design prioritizes flexibility, enabling it to operate in diverse environments ranging from personal laptops to powerful cloud solutions like AWS, Azure, GCP, and Lambda, making it a versatile choice for developers. This adaptability ensures that users can leverage the platform regardless of their operational context, enhancing its appeal across different use cases. -
38
fullmoon
fullmoon
FreeFullmoon is an innovative, open-source application designed to allow users to engage directly with large language models on their personal devices, prioritizing privacy and enabling offline use. Tailored specifically for Apple silicon, it functions smoothly across various platforms, including iOS, iPadOS, macOS, and visionOS. Users have the ability to customize their experience by modifying themes, fonts, and system prompts, while the app also works seamlessly with Apple's Shortcuts to enhance user productivity. Notably, Fullmoon is compatible with models such as Llama-3.2-1B-Instruct-4bit and Llama-3.2-3B-Instruct-4bit, allowing for effective AI interactions without requiring internet connectivity. This makes it a versatile tool for anyone looking to harness the power of AI conveniently and privately. -
39
WorkLLama
WorkLLama
WorkLLama makes engaging your existing database easy and helps you attract qualified candidates to your talent pipeline. Referrals are a great way for WorkLLama to increase the number of qualified candidates in your talent community. Our AI conversational bot allows you to personalize your engagement without losing time. Social referral management can help you extend your direct sourcing channels by 10x. WorkLLama helps to understand your talent pool. It also helps you keep your employer brand top of mind with purposeful and frictionless candidate engagement. WorkLLama helps you retain high-performing employees and provides the data you need to make informed workforce decisions. Profiles that are easy to update, search and maintain allow you to know the availability of workers, career goals, and income objectives. -
40
HumanLayer
HumanLayer
$500 per monthHumanLayer provides an API and SDK that allows AI agents to engage with humans for feedback, input, and approvals. It ensures that critical function calls are monitored by human oversight through approval workflows that operate across platforms like Slack and email. By seamlessly integrating with your favorite Large Language Model (LLM) and various frameworks, HumanLayer equips AI agents with secure access to external information. The platform is compatible with numerous frameworks and LLMs, such as LangChain, CrewAI, ControlFlow, LlamaIndex, Haystack, OpenAI, Claude, Llama3.1, Mistral, Gemini, and Cohere. Key features include structured approval workflows, integration of human input as a tool, and tailored responses that can escalate as needed. It enables the pre-filling of response prompts for more fluid interactions between humans and agents. Additionally, users can direct requests to specific individuals or teams and manage which users have the authority to approve or reply to LLM inquiries. By allowing the flow of control to shift from human-initiated to agent-initiated, HumanLayer enhances the versatility of AI interactions. Furthermore, the platform allows for the incorporation of multiple human communication channels into your agent's toolkit, thereby expanding the range of user engagement options. -
41
Arize Phoenix
Arize AI
FreePhoenix serves as a comprehensive open-source observability toolkit tailored for experimentation, evaluation, and troubleshooting purposes. It empowers AI engineers and data scientists to swiftly visualize their datasets, assess performance metrics, identify problems, and export relevant data for enhancements. Developed by Arize AI, the creators of a leading AI observability platform, alongside a dedicated group of core contributors, Phoenix is compatible with OpenTelemetry and OpenInference instrumentation standards. The primary package is known as arize-phoenix, and several auxiliary packages cater to specialized applications. Furthermore, our semantic layer enhances LLM telemetry within OpenTelemetry, facilitating the automatic instrumentation of widely-used packages. This versatile library supports tracing for AI applications, allowing for both manual instrumentation and seamless integrations with tools like LlamaIndex, Langchain, and OpenAI. By employing LLM tracing, Phoenix meticulously logs the routes taken by requests as they navigate through various stages or components of an LLM application, thus providing a clearer understanding of system performance and potential bottlenecks. Ultimately, Phoenix aims to streamline the development process, enabling users to maximize the efficiency and reliability of their AI solutions. -
42
Llama 3.2
Meta
FreeThe latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains. -
43
Solar Mini
Upstage AI
$0.1 per 1M tokensSolar Mini is an advanced pre-trained large language model that matches the performance of GPT-3.5 while providing responses 2.5 times faster, all while maintaining a parameter count of under 30 billion. In December 2023, it secured the top position on the Hugging Face Open LLM Leaderboard by integrating a 32-layer Llama 2 framework, which was initialized with superior Mistral 7B weights, coupled with a novel method known as "depth up-scaling" (DUS) that enhances the model's depth efficiently without the need for intricate modules. Following the DUS implementation, the model undergoes further pretraining to restore and boost its performance, and it also includes instruction tuning in a question-and-answer format, particularly tailored for Korean, which sharpens its responsiveness to user prompts, while alignment tuning ensures its outputs align with human or sophisticated AI preferences. Solar Mini consistently surpasses rivals like Llama 2, Mistral 7B, Ko-Alpaca, and KULLM across a range of benchmarks, demonstrating that a smaller model can still deliver exceptional performance. This showcases the potential of innovative architectural strategies in the development of highly efficient AI models. -
44
LlamaParse
LlamaIndex
LlamaParse is an innovative document parsing solution designed to convert intricate documents into formats suitable for LLMs with unmatched precision. From financial statements to academic articles and user guides, LlamaParse enhances your document processing experience, allowing you to concentrate on utilizing your data instead of managing it. It accommodates a variety of file formats, such as PDFs, DOCX, PPTX, XLSX, JPEG, HTML, EPUB, and XML. The service features several parsing modes to address various document-related tasks: the Fast/Accurate mode is ideal for extracting text and tables, the Multimodal mode excels with documents that incorporate visual elements, and the Premium mode delivers superior parsing capabilities for any document type, ensuring the highest level of accuracy and detail. Furthermore, LlamaParse offers exceptional customization options to meet your individual requirements, including the ability to select output formats, target specific sections of documents, and utilize natural language instructions for parsing. This level of adaptability makes LlamaParse a versatile tool for anyone needing efficient document processing. -
45
Property Llama
Property Llama
FreeProperty Llama replaces cumbersome spreadsheets by an intuitive and user-friendly app. It streamlines portfolio management through advanced financial modeling, personalized insights and was created by real estate investors for real estate investors. Property Llama makes managing your real estate investment easier and more efficient.