Best LangChain Alternatives in 2025
Find the top alternatives to LangChain currently available. Compare ratings, reviews, pricing, and features of LangChain alternatives in 2025. Slashdot lists the best LangChain alternatives on the market that offer competing products that are similar to LangChain. Sort through LangChain alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
677 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Google AI Studio
Google
4 RatingsGoogle AI Studio is a user-friendly, web-based workspace that offers a streamlined environment for exploring and applying cutting-edge AI technology. It acts as a powerful launchpad for diving into the latest developments in AI, making complex processes more accessible to developers of all levels. The platform provides seamless access to Google's advanced Gemini AI models, creating an ideal space for collaboration and experimentation in building next-gen applications. With tools designed for efficient prompt crafting and model interaction, developers can quickly iterate and incorporate complex AI capabilities into their projects. The flexibility of the platform allows developers to explore a wide range of use cases and AI solutions without being constrained by technical limitations. Google AI Studio goes beyond basic testing by enabling a deeper understanding of model behavior, allowing users to fine-tune and enhance AI performance. This comprehensive platform unlocks the full potential of AI, facilitating innovation and improving efficiency in various fields by lowering the barriers to AI development. By removing complexities, it helps users focus on building impactful solutions faster. -
3
LM-Kit.NET
LM-Kit
8 RatingsLM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents. Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development. Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide. -
4
Stack AI
Stack AI
16 RatingsAI agents that interact and answer questions with users and complete tasks using your data and APIs. AI that can answer questions, summarize and extract insights from any long document. Transfer styles and formats, as well as tags and summaries between documents and data sources. Stack AI is used by developer teams to automate customer service, process documents, qualify leads, and search libraries of data. With a single button, you can try multiple LLM architectures and prompts. Collect data, run fine-tuning tasks and build the optimal LLM to fit your product. We host your workflows in APIs, so that your users have access to AI instantly. Compare the fine-tuning services of different LLM providers. -
5
Zapier
Zapier
$19.99 per month 22 RatingsLink your applications and streamline your processes with ease. Designed for those with busy schedules, Zapier automates the transfer of information between your web applications, allowing you to concentrate on what matters most. With just a few clicks, you can connect your online tools so they can exchange data effortlessly. Information flows between your applications through automated workflows known as Zaps. Accelerate your projects and enhance productivity without the need for programming skills. Explore how Zapier democratizes automation for everyone. Continue using the tools you love while benefiting from the extensive connectivity Zapier offers, as it integrates with more web applications than any other service and continually adds new ones weekly. Our platform works seamlessly with popular applications like Facebook Lead Ads, Slack, Quickbooks, Google Sheets, Google Docs, and many more! The intuitive editor is designed for self-service automation, enabling you to establish Zaps without needing a developer's assistance. Leverage Zapier’s built-in tools to craft robust workflows without relying on additional services. Over 3 million users trust Zapier to handle their repetitive tasks efficiently. Furthermore, Zapier Agents empower businesses to automate real-world operations by developing custom AI-driven teammates, enhancing both productivity and innovation. In this way, Zapier not only simplifies automation but also expands the horizons of what teams can achieve together. -
6
Kore.ai
Kore.ai
Kore.ai enables enterprises worldwide to harness the power of AI for automation, efficiency, and customer engagement through its advanced AI agent platform and no-code development tools. Specializing in AI-powered work automation, process optimization, and intelligent service solutions, Kore.ai provides businesses with scalable, customizable technology to accelerate digital transformation. The company takes a model-agnostic approach, offering flexibility across various data sources, cloud environments, and applications to meet diverse enterprise needs. With a strong track record, Kore.ai is trusted by over 500 partners and 400 Fortune 2000 companies to drive their AI strategies and innovation. Recognized as an industry leader with an extensive patent portfolio, it continues to push the boundaries of AI-driven solutions. Headquartered in Orlando, Kore.ai maintains a global presence with offices in India, the UK, the Middle East, Japan, South Korea, and Europe, ensuring comprehensive support for its customers. Through cutting-edge AI advancements, Kore.ai is shaping the future of enterprise automation and intelligent customer interactions. -
7
AutoGPT
AutoGPT
FreeAutoGPT is a pioneering open-source tool that demonstrates the potential of the GPT-4 language model. This innovative application utilizes GPT-4 to link together various "thoughts" generated by the model, enabling it to independently pursue any objectives you define. As one of the initial implementations of GPT-4 functioning entirely on its own, Auto-GPT expands the frontiers of artificial intelligence capabilities. It offers features such as 🌐 the ability to access the internet for conducting searches and collecting information, 💾 management of both long-term and short-term memory, 🧠 utilization of GPT-4 instances for generating text, 🔗 connections to widely used websites and platforms, 🗃️ capabilities for file storage and summarization, and 🔌 the option to extend functionality through plugins. This makes it a versatile tool for various applications. -
8
OpenRouter
OpenRouter
$2 one-time payment 1 RatingOpenRouter serves as a consolidated interface for various large language models (LLMs). It efficiently identifies the most competitive prices and optimal latencies/throughputs from numerous providers, allowing users to establish their own priorities for these factors. There’s no need to modify your existing code when switching between different models or providers, making the process seamless. Users also have the option to select and finance their own models. Instead of relying solely on flawed evaluations, OpenRouter enables the comparison of models based on their actual usage across various applications. You can engage with multiple models simultaneously in a chatroom setting. The payment for model usage can be managed by users, developers, or a combination of both, and the availability of models may fluctuate. Additionally, you can access information about models, pricing, and limitations through an API. OpenRouter intelligently directs requests to the most suitable providers for your chosen model, in line with your specified preferences. By default, it distributes requests evenly among the leading providers to ensure maximum uptime; however, you have the flexibility to tailor this process by adjusting the provider object within the request body. Prioritizing providers that have maintained a stable performance without significant outages in the past 10 seconds is also a key feature. Ultimately, OpenRouter simplifies the process of working with multiple LLMs, making it a valuable tool for developers and users alike. -
9
BabyAGI
BabyAGI
FreeThis Python script exemplifies an AI-driven task management system that leverages both OpenAI and Chroma to manage tasks effectively. The core concept of this system is that it generates tasks informed by prior outcomes and a set goal. Utilizing OpenAI's natural language processing (NLP), the script formulates new tasks aligned with its objectives while employing Chroma to archive and access task outcomes for added context. This implementation serves as a simplified version of the original Task-Driven Autonomous Agent. The script operates within an endless loop executing a series of defined steps, which include: 1. Retrieving the initial task from the list of tasks. 2. Dispatching the task to the execution agent, which utilizes OpenAI's API to accomplish the task within the contextual framework. 3. Enhancing the result obtained and saving it in Chroma for future reference. 4. Generating additional tasks and rearranging the task list according to the overarching objective and the results from the completed task, ensuring continuous adaptation and improvement in task management. This approach allows for a dynamic and responsive task management system that evolves with each completed task. -
10
AutoGen
Microsoft
FreeAn open-source programming framework designed for agent-based AI is available in the form of AutoGen. This framework presents a multi-agent conversational system that serves as a user-friendly abstraction layer, enabling the efficient creation of workflows involving large language models. AutoGen encompasses a diverse array of functional systems that cater to numerous applications across different fields and levels of complexity. Furthermore, it enhances the performance of inference APIs for large language models, offering opportunities to optimize efficiency and minimize expenses. By leveraging this framework, developers can streamline their projects while exploring innovative solutions in AI. -
11
DSPy
Stanford NLP
FreeDSPy serves as a framework designed for programming language models rather than relying on prompts. It facilitates rapid iteration in the development of modular AI systems and provides algorithms for enhancing both their prompts and weights, catering to projects ranging from basic classifiers to complex RAG pipelines and Agent loops, ultimately streamlining the entire process of AI system creation. -
12
Amazon Bedrock
Amazon
Amazon Bedrock is a comprehensive service that streamlines the development and expansion of generative AI applications by offering access to a diverse range of high-performance foundation models (FMs) from top AI organizations, including AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon. Utilizing a unified API, developers have the opportunity to explore these models, personalize them through methods such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that can engage with various enterprise systems and data sources. As a serverless solution, Amazon Bedrock removes the complexities associated with infrastructure management, enabling the effortless incorporation of generative AI functionalities into applications while prioritizing security, privacy, and ethical AI practices. This service empowers developers to innovate rapidly, ultimately enhancing the capabilities of their applications and fostering a more dynamic tech ecosystem. -
13
MosaicML
MosaicML
Easily train and deploy large-scale AI models with just a single command by pointing to your S3 bucket—then let us take care of everything else, including orchestration, efficiency, node failures, and infrastructure management. The process is straightforward and scalable, allowing you to utilize MosaicML to train and serve large AI models using your own data within your secure environment. Stay ahead of the curve with our up-to-date recipes, techniques, and foundation models, all developed and thoroughly tested by our dedicated research team. With only a few simple steps, you can deploy your models within your private cloud, ensuring that your data and models remain behind your own firewalls. You can initiate your project in one cloud provider and seamlessly transition to another without any disruptions. Gain ownership of the model trained on your data while being able to introspect and clarify the decisions made by the model. Customize content and data filtering to align with your business requirements, and enjoy effortless integration with your existing data pipelines, experiment trackers, and other essential tools. Our solution is designed to be fully interoperable, cloud-agnostic, and validated for enterprise use, ensuring reliability and flexibility for your organization. Additionally, the ease of use and the power of our platform allow teams to focus more on innovation rather than infrastructure management. -
14
Dify
Dify
Dify serves as an open-source platform aimed at enhancing the efficiency of developing and managing generative AI applications. It includes a wide array of tools, such as a user-friendly orchestration studio for designing visual workflows, a Prompt IDE for testing and refining prompts, and advanced LLMOps features for the oversight and enhancement of large language models. With support for integration with multiple LLMs, including OpenAI's GPT series and open-source solutions like Llama, Dify offers developers the versatility to choose models that align with their specific requirements. Furthermore, its Backend-as-a-Service (BaaS) capabilities allow for the effortless integration of AI features into existing enterprise infrastructures, promoting the development of AI-driven chatbots, tools for document summarization, and virtual assistants. This combination of tools and features positions Dify as a robust solution for enterprises looking to leverage generative AI technologies effectively. -
15
Orq.ai
Orq.ai
Orq.ai stands out as the leading platform tailored for software teams to effectively manage agentic AI systems on a large scale. It allows you to refine prompts, implement various use cases, and track performance meticulously, ensuring no blind spots and eliminating the need for vibe checks. Users can test different prompts and LLM settings prior to launching them into production. Furthermore, it provides the capability to assess agentic AI systems within offline environments. The platform enables the deployment of GenAI features to designated user groups, all while maintaining robust guardrails, prioritizing data privacy, and utilizing advanced RAG pipelines. It also offers the ability to visualize all agent-triggered events, facilitating rapid debugging. Users gain detailed oversight of costs, latency, and overall performance. Additionally, you can connect with your preferred AI models or even integrate your own. Orq.ai accelerates workflow efficiency with readily available components specifically designed for agentic AI systems. It centralizes the management of essential phases in the LLM application lifecycle within a single platform. With options for self-hosted or hybrid deployment, it ensures compliance with SOC 2 and GDPR standards, thereby providing enterprise-level security. This comprehensive approach not only streamlines operations but also empowers teams to innovate and adapt swiftly in a dynamic technological landscape. -
16
NLTK
NLTK
FreeThe Natural Language Toolkit (NLTK) is a robust, open-source library for Python, specifically created for the processing of human language data. It features intuitive interfaces to more than 50 corpora and lexical resources, including WordNet, coupled with a variety of text processing libraries that facilitate tasks such as classification, tokenization, stemming, tagging, parsing, and semantic reasoning. Additionally, NLTK includes wrappers for powerful commercial NLP libraries and hosts an active forum for discussion among users. Accompanied by a practical guide that merges programming basics with computational linguistics concepts, along with detailed API documentation, NLTK caters to a wide audience, including linguists, engineers, students, educators, researchers, and professionals in the industry. This library is compatible across various operating systems, including Windows, Mac OS X, and Linux. Remarkably, NLTK is a free project that thrives on community contributions, ensuring continuous development and support. Its extensive resources make it an invaluable tool for anyone interested in the field of natural language processing. -
17
PrivateGPT
PrivateGPT
PrivateGPT serves as a personalized AI solution that integrates smoothly with a business's current data systems and tools while prioritizing privacy. It allows for secure, instantaneous access to information from various sources, enhancing team productivity and decision-making processes. By facilitating regulated access to a company's wealth of knowledge, it promotes better collaboration among teams, accelerates responses to customer inquiries, and optimizes software development workflows. The platform guarantees data confidentiality, providing versatile hosting choices, whether on-site, in the cloud, or through its own secure cloud offerings. PrivateGPT is specifically designed for organizations that aim to harness AI to tap into essential company data while ensuring complete oversight and privacy, making it an invaluable asset for modern businesses. Ultimately, it empowers teams to work smarter and more securely in a digital landscape. -
18
Ollama
Ollama
FreeOllama stands out as a cutting-edge platform that prioritizes the delivery of AI-driven tools and services, aimed at facilitating user interaction and the development of AI-enhanced applications. It allows users to run AI models directly on their local machines. By providing a diverse array of solutions, such as natural language processing capabilities and customizable AI functionalities, Ollama enables developers, businesses, and organizations to seamlessly incorporate sophisticated machine learning technologies into their operations. With a strong focus on user-friendliness and accessibility, Ollama seeks to streamline the AI experience, making it an attractive choice for those eager to leverage the power of artificial intelligence in their initiatives. This commitment to innovation not only enhances productivity but also opens doors for creative applications across various industries. -
19
Semantic Kernel
Microsoft
FreeSemantic Kernel is an open-source development toolkit that facilitates the creation of AI agents and the integration of cutting-edge AI models into applications written in C#, Python, or Java. This efficient middleware accelerates the deployment of robust enterprise solutions. Companies like Microsoft and other Fortune 500 firms are taking advantage of Semantic Kernel's flexibility, modularity, and observability. With built-in security features such as telemetry support, hooks, and filters, developers can confidently provide responsible AI solutions at scale. The support for versions 1.0 and above across C#, Python, and Java ensures reliability and a commitment to maintaining non-breaking changes. Existing chat-based APIs can be effortlessly enhanced to include additional modalities such as voice and video, making the toolkit highly adaptable. Semantic Kernel is crafted to be future-proof, ensuring seamless integration with the latest AI models as technology evolves, thus maintaining its relevance in the rapidly changing landscape of artificial intelligence. This forward-thinking design empowers developers to innovate without fear of obsolescence. -
20
Phidata
Phidata
FreePhidata serves as an open-source platform designed for the creation, deployment, and oversight of AI agents. By allowing users to craft specialized agents equipped with memory, knowledge, and the ability to utilize external tools, it significantly boosts the AI's effectiveness across various applications. The platform accommodates a diverse array of large language models and integrates effortlessly with numerous databases, vector storage solutions, and APIs. To facilitate rapid development and deployment, Phidata offers pre-built templates that empower users to seamlessly transition from agent creation to production readiness. Additionally, it features capabilities such as real-time monitoring, agent assessments, and tools for performance enhancement, which guarantee the dependability and scalability of AI implementations. Developers are also given the option to incorporate their own cloud infrastructure, providing customization flexibility for unique configurations. Moreover, Phidata emphasizes robust enterprise support, including security measures, agent guardrails, and automated DevOps processes, which contribute to a more efficient deployment experience. This comprehensive approach ensures that teams can harness the full potential of AI technology while maintaining control over their specific requirements. -
21
SmythOS
SmythOS
$30 per monthBid farewell to the hassles of manual coding and accelerate the creation of agents like never before. Simply articulate your requirements, and SmythOS will generate it based on your conversation or image, leveraging top-tier AI models and APIs tailored to your needs. You can utilize any AI model or API, seamlessly integrating with platforms such as OpenAI, Hugging Face, Amazon Bedrock, and countless others without needing to write a single line of code. With a library of pre-built agent templates, you can access agents that are ready to function for various use cases instantly; all it takes is a click of a button and your API keys to connect. It's essential that your marketing team does not have access to agents interacting with your code, and we ensure that protection. Establish dedicated spaces for each client, team, and project with comprehensive user and permission management capabilities. You can choose to deploy on-premises or on AWS, while integrating with Bedrock, Vertex, Adobe, Salesforce, and much more. Enjoy explainable AI with complete oversight over data flows, including audit logs, encryption, and authentication measures. You can engage in conversations with your agents, assign them bulk tasks, review their logs, set work schedules, and perform an array of additional functions to streamline your operations efficiently. This innovative approach empowers your team to focus on strategy and creativity, leaving the technical complexities to SmythOS. -
22
SuperAGI SuperCoder
SuperAGI
FreeSuperAGI SuperCoder is an innovative open-source autonomous platform that merges an AI-driven development environment with AI agents, facilitating fully autonomous software creation, beginning with the Python language and its frameworks. The latest iteration, SuperCoder 2.0, utilizes large language models and a Large Action Model (LAM) that has been specially fine-tuned for Python code generation, achieving remarkable accuracy in one-shot or few-shot coding scenarios, surpassing benchmarks like SWE-bench and Codebench. As a self-sufficient system, SuperCoder 2.0 incorporates tailored software guardrails specific to development frameworks, initially focusing on Flask and Django, while also utilizing SuperAGI’s Generally Intelligent Developer Agents to construct intricate real-world software solutions. Moreover, SuperCoder 2.0 offers deep integration with popular tools in the developer ecosystem, including Jira, GitHub or GitLab, Jenkins, and cloud-based QA solutions like BrowserStack and Selenium, ensuring a streamlined and efficient software development process. By combining cutting-edge technology with practical software engineering needs, SuperCoder 2.0 aims to redefine the landscape of automated software development. -
23
Rasa is the leader in generative conversational AI, empowering enterprises to optimize customer service processes and reduce costs by enabling next-level AI assistant development and operation at scale. Combining pro-code and no-code options, our platform allows cross-team collaboration for smarter and faster AI assistant building to accelerate time-to-value significantly.
-
24
RAGFlow
RAGFlow
FreeRAGFlow is a publicly available Retrieval-Augmented Generation (RAG) system that improves the process of information retrieval by integrating Large Language Models (LLMs) with advanced document comprehension. This innovative tool presents a cohesive RAG workflow that caters to organizations of all sizes, delivering accurate question-answering functionalities supported by credible citations derived from a range of intricately formatted data. Its notable features comprise template-driven chunking, the ability to work with diverse data sources, and the automation of RAG orchestration, making it a versatile solution for enhancing data-driven insights. Additionally, RAGFlow's design promotes ease of use, ensuring that users can efficiently access relevant information in a seamless manner. -
25
Prompt flow
Microsoft
Prompt Flow is a comprehensive suite of development tools aimed at optimizing the entire development lifecycle of AI applications built on LLMs, encompassing everything from concept creation and prototyping to testing, evaluation, and final deployment. By simplifying the prompt engineering process, it empowers users to develop high-quality LLM applications efficiently. Users can design workflows that seamlessly combine LLMs, prompts, Python scripts, and various other tools into a cohesive executable flow. This platform enhances the debugging and iterative process, particularly by allowing users to easily trace interactions with LLMs. Furthermore, it provides capabilities to assess the performance and quality of flows using extensive datasets, while integrating the evaluation phase into your CI/CD pipeline to maintain high standards. The deployment process is streamlined, enabling users to effortlessly transfer their flows to their preferred serving platform or integrate them directly into their application code. Collaboration among team members is also improved through the utilization of the cloud-based version of Prompt Flow available on Azure AI, making it easier to work together on projects. This holistic approach to development not only enhances efficiency but also fosters innovation in LLM application creation. -
26
Relevance AI
Relevance AI
Relevance AI stands out as a premier platform that enables organizations to develop and oversee autonomous AI agents and collaborative multi-agent teams, streamlining the automation of intricate tasks across diverse areas including sales, marketing, customer support, research, and operations. Its intuitive interface allows users to create AI agents without any programming skills, tailor them to adhere to unique organizational workflows, and easily integrate them with current technology systems. The platform features an assortment of ready-made agents, such as Bosh the Sales Agent, which is specifically crafted to engage prospects, arrange meetings at any hour, and deliver personalized communications, significantly boosting efficiency and scalability. With a strong focus on data privacy and security, Relevance AI is certified as SOC 2 Type II and complies with GDPR regulations, offering flexible data storage options across various regions. By utilizing Relevance AI, businesses can offload mundane tasks to AI agents, which enables their human workforce to prioritize more complex and valuable activities, ultimately fostering business expansion. This innovative approach not only enhances productivity but also positions companies to adapt swiftly to changing market dynamics. -
27
AgentGPT enables users to set up and launch autonomous AI agents tailored to their specifications. You can create a personalized AI and set it on a mission of your choice, where it will strategize tasks, carry them out, and adapt based on the outcomes it experiences. This process allows for continuous improvement and goal refinement, making the AI increasingly efficient in achieving its objectives.
-
28
PydanticAI
Pydantic
FreePydanticAI is an innovative framework crafted in Python that aims to facilitate the creation of high-quality applications leveraging generative AI technologies. Developed by the creators of Pydantic, this framework connects effortlessly with leading AI models such as OpenAI, Anthropic, and Gemini. It features a type-safe architecture, enabling real-time debugging and performance tracking through the Pydantic Logfire system. By utilizing Pydantic for output validation, PydanticAI guarantees structured and consistent responses from models. Additionally, the framework incorporates a dependency injection system, which aids in the iterative process of development and testing, and allows for the streaming of LLM outputs to support quick validation. Perfectly suited for AI-centric initiatives, PydanticAI promotes an adaptable and efficient composition of agents while adhering to established Python best practices. Ultimately, the goal behind PydanticAI is to replicate the user-friendly experience of FastAPI in the realm of generative AI application development, thereby enhancing the overall workflow for developers. -
29
MetaGPT
MetaGPT
FreeThe Multi-Agent Framework allows for the transformation of a single line requirement into a comprehensive set of outputs including PRD, design specifications, tasks, and repository details. By assigning various roles to separate GPTs, a synergistic software entity is created that can tackle intricate projects effectively. MetaGPT processes a one-line requirement to generate user stories, competitive analyses, requirements, data structures, APIs, and documentation. Within its architecture, MetaGPT encompasses roles such as product managers, architects, project managers, and engineers, thereby facilitating the complete workflow of a software company with meticulously designed Standard Operating Procedures (SOPs). This integrated approach not only enhances collaboration but also streamlines the development process, ensuring that all aspects of software creation are covered efficiently. -
30
Agno
Agno
FreeAgno is a streamlined framework designed for creating agents equipped with memory, knowledge, tools, and reasoning capabilities. It allows developers to construct a variety of agents, including reasoning agents, multimodal agents, teams of agents, and comprehensive agent workflows. Additionally, Agno features an attractive user interface that facilitates communication with agents and includes tools for performance monitoring and evaluation. Being model-agnostic, it ensures a consistent interface across more than 23 model providers, eliminating the risk of vendor lock-in. Agents can be instantiated in roughly 2μs on average, which is about 10,000 times quicker than LangGraph, while consuming an average of only 3.75KiB of memory—50 times less than LangGraph. The framework prioritizes reasoning, enabling agents to engage in "thinking" and "analysis" through reasoning models, ReasoningTools, or a tailored CoT+Tool-use method. Furthermore, Agno supports native multimodality, allowing agents to handle various inputs and outputs such as text, images, audio, and video. The framework's sophisticated multi-agent architecture encompasses three operational modes: route, collaborate, and coordinate, enhancing the flexibility and effectiveness of agent interactions. By integrating these features, Agno provides a robust platform for developing intelligent agents that can adapt to diverse tasks and scenarios. -
31
Griptape
Griptape AI
FreeBuild, deploy and scale AI applications from end-to-end in the cloud. Griptape provides developers with everything they need from the development framework up to the execution runtime to build, deploy and scale retrieval driven AI-powered applications. Griptape, a Python framework that is modular and flexible, allows you to build AI-powered apps that securely connect with your enterprise data. It allows developers to maintain control and flexibility throughout the development process. Griptape Cloud hosts your AI structures whether they were built with Griptape or another framework. You can also call directly to LLMs. To get started, simply point your GitHub repository. You can run your hosted code using a basic API layer, from wherever you are. This will allow you to offload the expensive tasks associated with AI development. Automatically scale your workload to meet your needs. -
32
Mastra
Mastra AI
FreeMastra is an open-source TypeScript framework that allows developers to build AI agents capable of performing tasks, managing knowledge, and retaining memory across interactions. With a clean and intuitive API, Mastra simplifies the creation of complex agent workflows, enabling real-time task execution and seamless integration with machine learning models like GPT-4. The framework supports task orchestration, agent memory, and knowledge management, making it ideal for applications in automation, personalized services, and complex systems. -
33
Hugging Face
Hugging Face
$9 per monthHugging Face is an AI community platform that provides state-of-the-art machine learning models, datasets, and APIs to help developers build intelligent applications. The platform’s extensive repository includes models for text generation, image recognition, and other advanced machine learning tasks. Hugging Face’s open-source ecosystem, with tools like Transformers and Tokenizers, empowers both individuals and enterprises to build, train, and deploy machine learning solutions at scale. It offers integration with major frameworks like TensorFlow and PyTorch for streamlined model development. -
34
Graphlit
Graphlit
$49 per monthWhether you're developing an AI assistant, chatbot, or improving your current application with LLMs, Graphlit simplifies the process. It operates on a serverless, cloud-native architecture that streamlines intricate data workflows, encompassing data ingestion, knowledge extraction, LLM interactions, semantic searches, alert notifications, and webhook integrations. With Graphlit's workflow-as-code methodology, you can systematically outline every phase of the content workflow. This includes everything from data ingestion to metadata indexing and data preparation, as well as from data sanitization to entity extraction and data enrichment. Ultimately, it facilitates seamless integration with your applications through event-driven webhooks and API connections, making the entire process more efficient and user-friendly. This flexibility ensures that developers can tailor workflows to meet specific needs without unnecessary complexity. -
35
FastGPT
FastGPT
$0.37 per monthFastGPT is a versatile, open-source AI knowledge base platform that streamlines data processing, model invocation, and retrieval-augmented generation, as well as visual AI workflows, empowering users to create sophisticated large language model applications with ease. Users can develop specialized AI assistants by training models using imported documents or Q&A pairs, accommodating a variety of formats such as Word, PDF, Excel, Markdown, and links from the web. Additionally, the platform automates essential data preprocessing tasks, including text refinement, vectorization, and QA segmentation, which significantly boosts overall efficiency. FastGPT features a user-friendly visual drag-and-drop interface that supports AI workflow orchestration, making it simpler to construct intricate workflows that might incorporate actions like database queries and inventory checks. Furthermore, it provides seamless API integration, allowing users to connect their existing GPT applications with popular platforms such as Discord, Slack, and Telegram, all while using OpenAI-aligned APIs. This comprehensive approach not only enhances user experience but also broadens the potential applications of AI technology in various domains. -
36
Hugging Face Transformers
Hugging Face
$9 per monthTransformers is a versatile library that includes pretrained models for natural language processing, computer vision, audio, and multimodal tasks, facilitating both inference and training. With the Transformers library, you can effectively train models tailored to your specific data, create inference applications, and utilize large language models for text generation. Visit the Hugging Face Hub now to discover a suitable model and leverage Transformers to kickstart your projects immediately. This library provides a streamlined and efficient inference class that caters to various machine learning tasks, including text generation, image segmentation, automatic speech recognition, and document question answering, among others. Additionally, it features a robust trainer that incorporates advanced capabilities like mixed precision, torch.compile, and FlashAttention, making it ideal for both training and distributed training of PyTorch models. The library ensures rapid text generation through large language models and vision-language models, and each model is constructed from three fundamental classes (configuration, model, and preprocessor), allowing for quick deployment in either inference or training scenarios. Overall, Transformers empowers users with the tools needed to create sophisticated machine learning solutions with ease and efficiency. -
37
Llama Stack
Meta
FreeLlama Stack is an innovative modular framework aimed at simplifying the creation of applications that utilize Meta's Llama language models. It features a client-server architecture with adaptable configurations, giving developers the ability to combine various providers for essential components like inference, memory, agents, telemetry, and evaluations. This framework comes with pre-configured distributions optimized for a range of deployment scenarios, facilitating smooth transitions from local development to live production settings. Developers can engage with the Llama Stack server through client SDKs that support numerous programming languages, including Python, Node.js, Swift, and Kotlin. In addition, comprehensive documentation and sample applications are made available to help users efficiently construct and deploy applications based on the Llama framework. The combination of these resources aims to empower developers to build robust, scalable applications with ease. -
38
Flowise
Flowise AI
FreeFlowise is a versatile open-source platform that simplifies the creation of tailored Large Language Model (LLM) applications using an intuitive drag-and-drop interface designed for low-code development. This platform accommodates connections with multiple LLMs, such as LangChain and LlamaIndex, and boasts more than 100 integrations to support the building of AI agents and orchestration workflows. Additionally, Flowise offers a variety of APIs, SDKs, and embedded widgets that enable smooth integration into pre-existing systems, ensuring compatibility across different platforms, including deployment in isolated environments using local LLMs and vector databases. As a result, developers can efficiently create and manage sophisticated AI solutions with minimal technical barriers. -
39
Letta
Letta
FreeWith Letta, you can create, deploy, and manage your agents on a large scale, allowing the development of production applications supported by agent microservices that utilize REST APIs. By integrating memory capabilities into your LLM services, Letta enhances their advanced reasoning skills and provides transparent long-term memory through the innovative technology powered by MemGPT. We hold the belief that the foundation of programming agents lies in the programming of memory itself. Developed by the team behind MemGPT, this platform offers self-managed memory specifically designed for LLMs. Letta's Agent Development Environment (ADE) allows you to reveal the full sequence of tool calls, reasoning processes, and decisions that contribute to the outputs generated by your agents. Unlike many systems that are limited to just prototyping, Letta is engineered by systems experts for large-scale production, ensuring that the agents you design can grow in effectiveness over time. You can easily interrogate the system, debug your agents, and refine their outputs without falling prey to the opaque, black box solutions offered by major closed AI corporations, empowering you to have complete control over your development process. Experience a new era of agent management where transparency and scalability go hand in hand. -
40
LlamaIndex
LlamaIndex
LlamaIndex serves as a versatile "data framework" designed to assist in the development of applications powered by large language models (LLMs). It enables the integration of semi-structured data from various APIs, including Slack, Salesforce, and Notion. This straightforward yet adaptable framework facilitates the connection of custom data sources to LLMs, enhancing the capabilities of your applications with essential data tools. By linking your existing data formats—such as APIs, PDFs, documents, and SQL databases—you can effectively utilize them within your LLM applications. Furthermore, you can store and index your data for various applications, ensuring seamless integration with downstream vector storage and database services. LlamaIndex also offers a query interface that allows users to input any prompt related to their data, yielding responses that are enriched with knowledge. It allows for the connection of unstructured data sources, including documents, raw text files, PDFs, videos, and images, while also making it simple to incorporate structured data from sources like Excel or SQL. Additionally, LlamaIndex provides methods for organizing your data through indices and graphs, making it more accessible for use with LLMs, thereby enhancing the overall user experience and expanding the potential applications. -
41
Langflow
Langflow
Langflow serves as a low-code AI development platform that enables the creation of applications utilizing agentic capabilities and retrieval-augmented generation. With its intuitive visual interface, developers can easily assemble intricate AI workflows using drag-and-drop components, which streamlines the process of experimentation and prototyping. Being Python-based and independent of any specific model, API, or database, it allows for effortless integration with a wide array of tools and technology stacks. Langflow is versatile enough to support the creation of intelligent chatbots, document processing systems, and multi-agent frameworks. It comes equipped with features such as dynamic input variables, fine-tuning options, and the flexibility to design custom components tailored to specific needs. Moreover, Langflow connects seamlessly with various services, including Cohere, Bing, Anthropic, HuggingFace, OpenAI, and Pinecone, among others. Developers have the option to work with pre-existing components or write their own code, thus enhancing the adaptability of AI application development. The platform additionally includes a free cloud service, making it convenient for users to quickly deploy and test their projects, fostering innovation and rapid iteration in AI solutions. As a result, Langflow stands out as a comprehensive tool for anyone looking to leverage AI technology efficiently. -
42
LangGraph
LangChain
FreeAchieve enhanced precision and control through LangGraph, enabling the creation of agents capable of efficiently managing intricate tasks. The LangGraph Platform facilitates the development and scaling of agent-driven applications. With its adaptable framework, LangGraph accommodates various control mechanisms, including single-agent, multi-agent, hierarchical, and sequential flows, effectively addressing intricate real-world challenges. Reliability is guaranteed by the straightforward integration of moderation and quality loops, which ensure agents remain focused on their objectives. Additionally, LangGraph Platform allows you to create templates for your cognitive architecture, making it simple to configure tools, prompts, and models using LangGraph Platform Assistants. Featuring inherent statefulness, LangGraph agents work in tandem with humans by drafting work for review and awaiting approval prior to executing actions. Users can easily monitor the agent’s decisions, and the "time-travel" feature enables rolling back to revisit and amend previous actions for a more accurate outcome. This flexibility ensures that the agents not only perform tasks effectively but also adapt to changing requirements and feedback. -
43
spaCy
spaCy
FreespaCy is crafted to empower users in practical applications, enabling the development of tangible products and the extraction of valuable insights. The library is mindful of your time, striving to minimize any delays in your workflow. Installation is straightforward, and the API is both intuitive and efficient to work with. spaCy is particularly adept at handling large-scale information extraction assignments. Built from the ground up using meticulously managed Cython, it ensures optimal performance. If your project requires processing vast datasets, spaCy is undoubtedly the go-to library. Since its launch in 2015, it has established itself as a benchmark in the industry, supported by a robust ecosystem. Users can select from various plugins, seamlessly integrate with machine learning frameworks, and create tailored components and workflows. It includes features for named entity recognition, part-of-speech tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking, and much more. Its architecture allows for easy customization, which facilitates adding unique components and attributes. Moreover, it simplifies model packaging, deployment, and the overall management of workflows, making it an invaluable tool for any data-driven project. -
44
Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
-
45
Lyzr Agent Studio provides a low-code/no code platform that allows enterprises to build, deploy and scale AI agents without requiring a lot of technical expertise. This platform is built on Lyzr’s robust Agent Framework, the first and only agent Framework to have safe and reliable AI natively integrated in the core agent architecture. The platform allows non-technical and technical users to create AI powered solutions that drive automation and improve operational efficiency while enhancing customer experiences without the need for extensive programming expertise. Lyzr Agent Studio allows you to build complex, industry-specific apps for sectors such as BFSI or deploy AI agents for Sales and Marketing, HR or Finance.
-
46
txtai
NeuML
Freetxtai is a comprehensive open-source embeddings database that facilitates semantic search, orchestrates large language models, and streamlines language model workflows. It integrates sparse and dense vector indexes, graph networks, and relational databases, creating a solid infrastructure for vector search while serving as a valuable knowledge base for applications involving LLMs. Users can leverage txtai to design autonomous agents, execute retrieval-augmented generation strategies, and create multi-modal workflows. Among its standout features are support for vector search via SQL, integration with object storage, capabilities for topic modeling, graph analysis, and the ability to index multiple modalities. It enables the generation of embeddings from a diverse range of data types including text, documents, audio, images, and video. Furthermore, txtai provides pipelines driven by language models to manage various tasks like LLM prompting, question-answering, labeling, transcription, translation, and summarization, thereby enhancing the efficiency of these processes. This innovative platform not only simplifies complex workflows but also empowers developers to harness the full potential of AI technologies. -
47
Literal AI
Literal AI
Literal AI is a collaborative platform crafted to support engineering and product teams in the creation of production-ready Large Language Model (LLM) applications. It features an array of tools focused on observability, evaluation, and analytics, which allows for efficient monitoring, optimization, and integration of different prompt versions. Among its noteworthy functionalities are multimodal logging, which incorporates vision, audio, and video, as well as prompt management that includes versioning and A/B testing features. Additionally, it offers a prompt playground that allows users to experiment with various LLM providers and configurations. Literal AI is designed to integrate effortlessly with a variety of LLM providers and AI frameworks, including OpenAI, LangChain, and LlamaIndex, and comes equipped with SDKs in both Python and TypeScript for straightforward code instrumentation. The platform further facilitates the development of experiments against datasets, promoting ongoing enhancements and minimizing the risk of regressions in LLM applications. With these capabilities, teams can not only streamline their workflows but also foster innovation and ensure high-quality outputs in their projects. -
48
PromptLayer
PromptLayer
FreeIntroducing the inaugural platform designed specifically for prompt engineers, where you can log OpenAI requests, review usage history, monitor performance, and easily manage your prompt templates. With this tool, you’ll never lose track of that perfect prompt again, ensuring GPT operates seamlessly in production. More than 1,000 engineers have placed their trust in this platform to version their prompts and oversee API utilization effectively. Begin integrating your prompts into production by creating an account on PromptLayer; just click “log in” to get started. Once you’ve logged in, generate an API key and make sure to store it securely. After you’ve executed a few requests, you’ll find them displayed on the PromptLayer dashboard! Additionally, you can leverage PromptLayer alongside LangChain, a widely used Python library that facilitates the development of LLM applications with a suite of useful features like chains, agents, and memory capabilities. Currently, the main method to access PromptLayer is via our Python wrapper library, which you can install effortlessly using pip. This streamlined approach enhances your workflow and maximizes the efficiency of your prompt engineering endeavors. -
49
Agenta
Agenta
FreeCollaborate effectively on prompts and assess LLM applications with assurance using Agenta, a versatile platform that empowers teams to swiftly develop powerful LLM applications. Build an interactive playground linked to your code, allowing the entire team to engage in experimentation and collaboration seamlessly. Methodically evaluate various prompts, models, and embeddings prior to launching into production. Share a link to collect valuable human feedback from team members, fostering a collaborative environment. Agenta is compatible with all frameworks, such as Langchain and Lama Index, as well as model providers, including OpenAI, Cohere, Huggingface, and self-hosted models. Additionally, the platform offers insights into the costs, latency, and chain of calls associated with your LLM application. Users can create straightforward LLM apps right from the user interface, but for those seeking to develop more tailored applications, coding in Python is necessary. Agenta stands out as a model-agnostic tool that integrates with a wide variety of model providers and frameworks, though it currently only supports an SDK in Python. This flexibility ensures that teams can adapt Agenta to their specific needs while maintaining a high level of functionality. -
50
Athina AI
Athina AI
FreeAthina functions as a collaborative platform for AI development, empowering teams to efficiently create, test, and oversee their AI applications. It includes a variety of features such as prompt management, evaluation tools, dataset management, and observability, all aimed at facilitating the development of dependable AI systems. With the ability to integrate various models and services, including custom solutions, Athina also prioritizes data privacy through detailed access controls and options for self-hosted deployments. Moreover, the platform adheres to SOC-2 Type 2 compliance standards, ensuring a secure setting for AI development activities. Its intuitive interface enables seamless collaboration between both technical and non-technical team members, significantly speeding up the process of deploying AI capabilities. Ultimately, Athina stands out as a versatile solution that helps teams harness the full potential of artificial intelligence.