What Integrates with Lambda?
Find out what Lambda integrations exist in 2025. Learn what software and services currently integrate with Lambda, and sort them by reviews, cost, features, and more. Below is a list of products that Lambda currently integrates with:
-
1
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
2
Jupyter Notebook
Project Jupyter
3 RatingsThe Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community. -
3
Keras is an API tailored for human users rather than machines. It adheres to optimal practices for alleviating cognitive strain by providing consistent and straightforward APIs, reducing the number of necessary actions for typical tasks, and delivering clear and actionable error messages. Additionally, it boasts comprehensive documentation alongside developer guides. Keras is recognized as the most utilized deep learning framework among the top five winning teams on Kaggle, showcasing its popularity and effectiveness. By simplifying the process of conducting new experiments, Keras enables users to implement more innovative ideas at a quicker pace than their competitors, which is a crucial advantage for success. Built upon TensorFlow 2.0, Keras serves as a robust framework capable of scaling across large GPU clusters or entire TPU pods with ease. Utilizing the full deployment potential of the TensorFlow platform is not just feasible; it is remarkably straightforward. You have the ability to export Keras models to JavaScript for direct browser execution, transform them to TF Lite for use on iOS, Android, and embedded devices, and seamlessly serve Keras models through a web API. This versatility makes Keras an invaluable tool for developers looking to maximize their machine learning capabilities.
-
4
ZenML
ZenML
FreeSimplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code. -
5
OpsVerse
OpsVerse
$79 per monthAiden by OpsVerse is an AI-driven DevOps assistant designed to help teams optimize their workflows and improve operational efficiency. It uses agentic AI to learn from team behaviors, tailor responses to specific environments, and take proactive actions such as scaling infrastructure or resolving deployment failures. Aiden integrates seamlessly with existing DevOps processes, offering real-time insights and automating repetitive tasks. With a privacy-first approach, Aiden complies with data security policies and offers flexible deployment options, ensuring security and compliance at all stages of DevOps management. -
6
NVIDIA Brev
NVIDIA
$0.04 per hourNVIDIA Brev is designed to streamline AI and ML development by delivering ready-to-use GPU environments hosted on popular cloud platforms. With Launchables, users can rapidly deploy preconfigured compute instances tailored to their project’s needs, including GPU capacity, container images, and essential files like notebooks or GitHub repositories. These Launchables can be customized, named, and generated with just a few clicks, then easily shared across social networks or directly with collaborators. The platform includes a variety of prebuilt Launchables that incorporate NVIDIA’s latest AI frameworks, microservices, and Blueprints, allowing developers to get started without delay. NVIDIA Brev also offers a virtual GPU sandbox, making it simple to set up CUDA-enabled environments, run Python scripts, and work within Jupyter notebooks right from a browser. Developers can monitor Launchable usage metrics and leverage CLI tools for fast code editing and SSH access. This flexible, easy-to-use platform accelerates the entire AI development lifecycle from experimentation to deployment. It empowers teams and startups to innovate faster by removing traditional infrastructure barriers. -
7
Caffe
BAIR
Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios.
- Previous
- You're on page 1
- Next