Amazon Bedrock
Amazon Bedrock is a comprehensive service that streamlines the development and expansion of generative AI applications by offering access to a diverse range of high-performance foundation models (FMs) from top AI organizations, including AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon. Utilizing a unified API, developers have the opportunity to explore these models, personalize them through methods such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that can engage with various enterprise systems and data sources. As a serverless solution, Amazon Bedrock removes the complexities associated with infrastructure management, enabling the effortless incorporation of generative AI functionalities into applications while prioritizing security, privacy, and ethical AI practices. This service empowers developers to innovate rapidly, ultimately enhancing the capabilities of their applications and fostering a more dynamic tech ecosystem.
Learn more
Ango Hub
Ango Hub is an all-in-one, quality-oriented data annotation platform that AI teams can use. Ango Hub is available on-premise and in the cloud. It allows AI teams and their data annotation workforces to quickly and efficiently annotate their data without compromising quality.
Ango Hub is the only data annotation platform that focuses on quality. It features features that enhance the quality of your annotations. These include a centralized labeling system, a real time issue system, review workflows and sample label libraries. There is also consensus up to 30 on the same asset.
Ango Hub is versatile as well. It supports all data types that your team might require, including image, audio, text and native PDF. There are nearly twenty different labeling tools that you can use to annotate data. Some of these tools are unique to Ango hub, such as rotated bounding box, unlimited conditional questions, label relations and table-based labels for more complicated labeling tasks.
Learn more
Axolotl
Axolotl is an innovative open-source tool crafted to enhance the fine-tuning process of a variety of AI models, accommodating numerous configurations and architectures. This platform empowers users to train models using diverse methods such as full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Additionally, users have the flexibility to customize their configurations through straightforward YAML files or by employing command-line interface overrides, while also being able to load datasets in various formats, whether custom or pre-tokenized. Axolotl seamlessly integrates with cutting-edge technologies, including xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and it is capable of operating on single or multiple GPUs using Fully Sharded Data Parallel (FSDP) or DeepSpeed. Whether run locally or in the cloud via Docker, it offers robust support for logging results and saving checkpoints to multiple platforms, ensuring users can easily track their progress. Ultimately, Axolotl aims to make the fine-tuning of AI models not only efficient but also enjoyable, all while maintaining a high level of functionality and scalability. With its user-friendly design, it invites both novices and experienced practitioners to explore the depths of AI model training.
Learn more
Entry Point AI
Entry Point AI serves as a cutting-edge platform for optimizing both proprietary and open-source language models. It allows users to manage prompts, fine-tune models, and evaluate their performance all from a single interface. Once you hit the ceiling of what prompt engineering can achieve, transitioning to model fine-tuning becomes essential, and our platform simplifies this process. Rather than instructing a model on how to act, fine-tuning teaches it desired behaviors. This process works in tandem with prompt engineering and retrieval-augmented generation (RAG), enabling users to fully harness the capabilities of AI models. Through fine-tuning, you can enhance the quality of your prompts significantly. Consider it an advanced version of few-shot learning where key examples are integrated directly into the model. For more straightforward tasks, you have the option to train a lighter model that can match or exceed the performance of a more complex one, leading to reduced latency and cost. Additionally, you can configure your model to avoid certain responses for safety reasons, which helps safeguard your brand and ensures proper formatting. By incorporating examples into your dataset, you can also address edge cases and guide the behavior of the model, ensuring it meets your specific requirements effectively. This comprehensive approach ensures that you not only optimize performance but also maintain control over the model's responses.
Learn more