Best Kolena Alternatives in 2025
Find the top alternatives to Kolena currently available. Compare ratings, reviews, pricing, and features of Kolena alternatives in 2025. Slashdot lists the best Kolena alternatives on the market that offer competing products that are similar to Kolena. Sort through Kolena alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
713 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
BentoML
BentoML
FreeDeploy your machine learning model in the cloud within minutes using a consolidated packaging format that supports both online and offline operations across various platforms. Experience a performance boost with throughput that is 100 times greater than traditional flask-based model servers, achieved through our innovative micro-batching technique. Provide exceptional prediction services that align seamlessly with DevOps practices and integrate effortlessly with widely-used infrastructure tools. The unified deployment format ensures high-performance model serving while incorporating best practices for DevOps. This service utilizes the BERT model, which has been trained with the TensorFlow framework to effectively gauge the sentiment of movie reviews. Our BentoML workflow eliminates the need for DevOps expertise, automating everything from prediction service registration to deployment and endpoint monitoring, all set up effortlessly for your team. This creates a robust environment for managing substantial ML workloads in production. Ensure that all models, deployments, and updates are easily accessible and maintain control over access through SSO, RBAC, client authentication, and detailed auditing logs, thereby enhancing both security and transparency within your operations. With these features, your machine learning deployment process becomes more efficient and manageable than ever before. -
3
Union Cloud
Union.ai
Free (Flyte)Union.ai Benefits: - Accelerated Data Processing & ML: Union.ai significantly speeds up data processing and machine learning. - Built on Trusted Open-Source: Leverages the robust open-source project Flyte™, ensuring a reliable and tested foundation for your ML projects. - Kubernetes Efficiency: Harnesses the power and efficiency of Kubernetes along with enhanced observability and enterprise features. - Optimized Infrastructure: Facilitates easier collaboration among Data and ML teams on optimized infrastructures, boosting project velocity. - Breaks Down Silos: Tackles the challenges of distributed tooling and infrastructure by simplifying work-sharing across teams and environments with reusable tasks, versioned workflows, and an extensible plugin system. - Seamless Multi-Cloud Operations: Navigate the complexities of on-prem, hybrid, or multi-cloud setups with ease, ensuring consistent data handling, secure networking, and smooth service integrations. - Cost Optimization: Keeps a tight rein on your compute costs, tracks usage, and optimizes resource allocation even across distributed providers and instances, ensuring cost-effectiveness. -
4
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
5
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
6
VESSL AI
VESSL AI
$100 + compute/month Accelerate the building, training, and deployment of models at scale through a fully managed infrastructure that provides essential tools and streamlined workflows. Launch personalized AI and LLMs on any infrastructure in mere seconds, effortlessly scaling inference as required. Tackle your most intensive tasks with batch job scheduling, ensuring you only pay for what you use on a per-second basis. Reduce costs effectively by utilizing GPU resources, spot instances, and a built-in automatic failover mechanism. Simplify complex infrastructure configurations by deploying with just a single command using YAML. Adjust to demand by automatically increasing worker capacity during peak traffic periods and reducing it to zero when not in use. Release advanced models via persistent endpoints within a serverless architecture, maximizing resource efficiency. Keep a close eye on system performance and inference metrics in real-time, tracking aspects like worker numbers, GPU usage, latency, and throughput. Additionally, carry out A/B testing with ease by distributing traffic across various models for thorough evaluation, ensuring your deployments are continually optimized for performance. -
7
Evidently AI
Evidently AI
$500 per monthAn open-source platform for monitoring machine learning models offers robust observability features. It allows users to evaluate, test, and oversee models throughout their journey from validation to deployment. Catering to a range of data types, from tabular formats to natural language processing and large language models, it is designed with both data scientists and ML engineers in mind. This tool provides everything necessary for the reliable operation of ML systems in a production environment. You can begin with straightforward ad hoc checks and progressively expand to a comprehensive monitoring solution. All functionalities are integrated into a single platform, featuring a uniform API and consistent metrics. The design prioritizes usability, aesthetics, and the ability to share insights easily. Users gain an in-depth perspective on data quality and model performance, facilitating exploration and troubleshooting. Setting up takes just a minute, allowing for immediate testing prior to deployment, validation in live environments, and checks during each model update. The platform also eliminates the hassle of manual configuration by automatically generating test scenarios based on a reference dataset. It enables users to keep an eye on every facet of their data, models, and testing outcomes. By proactively identifying and addressing issues with production models, it ensures sustained optimal performance and fosters ongoing enhancements. Additionally, the tool's versatility makes it suitable for teams of any size, enabling collaborative efforts in maintaining high-quality ML systems. -
8
MosaicML
MosaicML
Easily train and deploy large-scale AI models with just a single command by pointing to your S3 bucket—then let us take care of everything else, including orchestration, efficiency, node failures, and infrastructure management. The process is straightforward and scalable, allowing you to utilize MosaicML to train and serve large AI models using your own data within your secure environment. Stay ahead of the curve with our up-to-date recipes, techniques, and foundation models, all developed and thoroughly tested by our dedicated research team. With only a few simple steps, you can deploy your models within your private cloud, ensuring that your data and models remain behind your own firewalls. You can initiate your project in one cloud provider and seamlessly transition to another without any disruptions. Gain ownership of the model trained on your data while being able to introspect and clarify the decisions made by the model. Customize content and data filtering to align with your business requirements, and enjoy effortless integration with your existing data pipelines, experiment trackers, and other essential tools. Our solution is designed to be fully interoperable, cloud-agnostic, and validated for enterprise use, ensuring reliability and flexibility for your organization. Additionally, the ease of use and the power of our platform allow teams to focus more on innovation rather than infrastructure management. -
9
Daria
XBrain
Daria's innovative automated capabilities enable users to swiftly and effectively develop predictive models, drastically reducing the lengthy iterative processes typically associated with conventional machine learning methods. It eliminates both financial and technological obstacles, allowing enterprises to create AI systems from the ground up. By automating machine learning workflows, Daria helps data professionals save weeks of effort typically spent on repetitive tasks. The platform also offers a user-friendly graphical interface, making it accessible for those new to data science to gain practical experience in machine learning. With a suite of data transformation tools at their disposal, users can effortlessly create various feature sets. Daria conducts an extensive exploration of millions of potential algorithm combinations, modeling strategies, and hyperparameter configurations to identify the most effective predictive model. Moreover, models generated using Daria can be seamlessly deployed into production with just a single line of code through its RESTful API. This streamlined process not only enhances productivity but also empowers businesses to leverage AI more effectively in their operations. -
10
Cerebrium
Cerebrium
$ 0.00055 per secondEffortlessly deploy all leading machine learning frameworks like Pytorch, Onnx, and XGBoost with a single line of code. If you lack your own models, take advantage of our prebuilt options that are optimized for performance with sub-second latency. You can also fine-tune smaller models for specific tasks, which helps to reduce both costs and latency while enhancing overall performance. With just a few lines of code, you can avoid the hassle of managing infrastructure because we handle that for you. Seamlessly integrate with premier ML observability platforms to receive alerts about any feature or prediction drift, allowing for quick comparisons between model versions and prompt issue resolution. Additionally, you can identify the root causes of prediction and feature drift to tackle any decline in model performance effectively. Gain insights into which features are most influential in driving your model's performance, empowering you to make informed adjustments. This comprehensive approach ensures that your machine learning processes are both efficient and effective. -
11
WhyLabs
WhyLabs
Enhance your observability framework to swiftly identify data and machine learning challenges, facilitate ongoing enhancements, and prevent expensive incidents. Begin with dependable data by consistently monitoring data-in-motion to catch any quality concerns. Accurately detect shifts in data and models while recognizing discrepancies between training and serving datasets, allowing for timely retraining. Continuously track essential performance metrics to uncover any decline in model accuracy. It's crucial to identify and mitigate risky behaviors in generative AI applications to prevent data leaks and protect these systems from malicious attacks. Foster improvements in AI applications through user feedback, diligent monitoring, and collaboration across teams. With purpose-built agents, you can integrate in just minutes, allowing for the analysis of raw data without the need for movement or duplication, thereby ensuring both privacy and security. Onboard the WhyLabs SaaS Platform for a variety of use cases, utilizing a proprietary privacy-preserving integration that is security-approved for both healthcare and banking sectors, making it a versatile solution for sensitive environments. Additionally, this approach not only streamlines workflows but also enhances overall operational efficiency. -
12
Tencent Cloud TI Platform
Tencent
The Tencent Cloud TI Platform serves as a comprehensive machine learning service tailored for AI engineers, facilitating the AI development journey from data preprocessing all the way to model building, training, and evaluation, as well as deployment. This platform is preloaded with a variety of algorithm components and supports a range of algorithm frameworks, ensuring it meets the needs of diverse AI applications. By providing a seamless machine learning experience that encompasses the entire workflow, the Tencent Cloud TI Platform enables users to streamline the process from initial data handling to the final assessment of models. Additionally, it empowers even those new to AI to automatically construct their models, significantly simplifying the training procedure. The platform's auto-tuning feature further boosts the efficiency of parameter optimization, enabling improved model performance. Moreover, Tencent Cloud TI Platform offers flexible CPU and GPU resources that can adapt to varying computational demands, alongside accommodating different billing options, making it a versatile choice for users with diverse needs. This adaptability ensures that users can optimize costs while efficiently managing their machine learning workflows. -
13
Xilinx
Xilinx
Xilinx's AI development platform for inference on its hardware includes a suite of optimized intellectual property (IP), tools, libraries, models, and example designs, all crafted to maximize efficiency and user-friendliness. This platform unlocks the capabilities of AI acceleration on Xilinx’s FPGAs and ACAPs, accommodating popular frameworks and the latest deep learning models for a wide array of tasks. It features an extensive collection of pre-optimized models that can be readily deployed on Xilinx devices, allowing users to quickly identify the most suitable model and initiate re-training for specific applications. Additionally, it offers a robust open-source quantizer that facilitates the quantization, calibration, and fine-tuning of both pruned and unpruned models. Users can also take advantage of the AI profiler, which performs a detailed layer-by-layer analysis to identify and resolve performance bottlenecks. Furthermore, the AI library provides open-source APIs in high-level C++ and Python, ensuring maximum portability across various environments, from edge devices to the cloud. Lastly, the efficient and scalable IP cores can be tailored to accommodate a diverse range of application requirements, making this platform a versatile solution for developers. -
14
Openlayer
Openlayer
Integrate your datasets and models into Openlayer while collaborating closely with the entire team to establish clear expectations regarding quality and performance metrics. Thoroughly examine the reasons behind unmet objectives to address them effectively and swiftly. You have access to the necessary information for diagnosing the underlying causes of any issues. Produce additional data that mirrors the characteristics of the targeted subpopulation and proceed with retraining the model accordingly. Evaluate new code commits against your outlined goals to guarantee consistent advancement without any regressions. Conduct side-by-side comparisons of different versions to make well-informed choices and confidently release updates. By quickly pinpointing what influences model performance, you can save valuable engineering time. Identify the clearest avenues for enhancing your model's capabilities and understand precisely which data is essential for elevating performance, ensuring you focus on developing high-quality, representative datasets that drive success. With a commitment to continual improvement, your team can adapt and iterate efficiently in response to evolving project needs. -
15
Striveworks Chariot
Striveworks
Integrate AI seamlessly into your business to enhance trust and efficiency. Accelerate development and streamline deployment with the advantages of a cloud-native platform that allows for versatile deployment options. Effortlessly import models and access a well-organized model catalog from various departments within your organization. Save valuable time by quickly annotating data through model-in-the-loop hinting. Gain comprehensive insights into the origins and history of your data, models, workflows, and inferences, ensuring transparency at every step. Deploy models precisely where needed, including in edge and IoT scenarios, bridging gaps between technology and real-world applications. Valuable insights can be harnessed by all team members, not just data scientists, thanks to Chariot’s intuitive low-code interface that fosters collaboration across different teams. Rapidly train models using your organization’s production data and benefit from the convenience of one-click deployment, all while maintaining the ability to monitor model performance at scale to ensure ongoing efficacy. This comprehensive approach not only improves operational efficiency but also empowers teams to make informed decisions based on data-driven insights. -
16
Alibaba Cloud Machine Learning Platform for AI
Alibaba Cloud
$1.872 per hourAn all-inclusive platform that offers a wide array of machine learning algorithms tailored to fulfill your data mining and analytical needs. The Machine Learning Platform for AI delivers comprehensive machine learning solutions, encompassing data preprocessing, feature selection, model development, predictions, and performance assessment. This platform integrates these various services to enhance the accessibility of artificial intelligence like never before. With a user-friendly web interface, the Machine Learning Platform for AI allows users to design experiments effortlessly by simply dragging and dropping components onto a canvas. The process of building machine learning models is streamlined into a straightforward, step-by-step format, significantly boosting efficiency and lowering costs during experiment creation. Featuring over one hundred algorithm components, the Machine Learning Platform for AI addresses diverse scenarios, including regression, classification, clustering, text analysis, finance, and time series forecasting, catering to a wide range of analytical tasks. This comprehensive approach ensures that users can tackle any data challenge with confidence and ease. -
17
Teachable Machine
Teachable Machine
Teachable Machine offers a quick and straightforward approach to building machine learning models for websites, applications, and various other platforms, without needing any prior coding skills or technical expertise. This versatile tool allows users to either upload files or capture live examples, ensuring it fits seamlessly into your workflow. Additionally, it prioritizes user privacy by enabling on-device usage, meaning no data from your webcam or microphone is sent off your computer. As a web-based resource, Teachable Machine is designed to be user-friendly and inclusive, catering to a diverse audience that includes educators, artists, students, and innovators alike. Anyone with a creative idea can utilize this tool to train a computer to identify images, sounds, and poses, all without delving into complex programming. Once your model is trained, you can easily incorporate it into your personal projects and applications, expanding the possibilities of what you can create. The platform empowers users to explore and experiment with machine learning in a way that feels natural and manageable. -
18
Emly Labs
Emly Labs
$99/month Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction. -
19
Snorkel AI
Snorkel AI
AI is today blocked by a lack of labeled data. Not models. The first data-centric AI platform powered by a programmatic approach will unblock AI. With its unique programmatic approach, Snorkel AI is leading a shift from model-centric AI development to data-centric AI. By replacing manual labeling with programmatic labeling, you can save time and money. You can quickly adapt to changing data and business goals by changing code rather than manually re-labeling entire datasets. Rapid, guided iteration of the training data is required to develop and deploy AI models of high quality. Versioning and auditing data like code leads to faster and more ethical deployments. By collaborating on a common interface, which provides the data necessary to train models, subject matter experts can be integrated. Reduce risk and ensure compliance by labeling programmatically, and not sending data to external annotators. -
20
Delineate
Delineate
$99 per monthDelineate provides a user-friendly interface for creating predictive models powered by machine learning across various applications. Enhance your CRM with insights like churn predictions and sales forecasts, and develop data products tailored for your customers and team, among other possibilities. With Delineate, you can easily tap into data-driven insights that enhance your decision-making processes. This platform is designed for a wide array of users, including founders, revenue teams, product managers, executives, and those passionate about data. Explore Delineate today and discover how to maximize the potential of your data effectively. Embrace the future of analytics and empower your organization with tailored predictive capabilities. -
21
ScoopML
ScoopML
Effortlessly create sophisticated predictive models without the need for mathematics or programming, all in just a few simple clicks. Our comprehensive solution takes you through the entire process, from data cleansing to model construction and prediction generation, ensuring you have everything you need. You can feel secure in your decisions, as we provide insights into the rationale behind AI-driven choices, empowering your business with actionable data insights. Experience the ease of data analytics within minutes, eliminating the necessity for coding. Our streamlined approach allows you to build machine learning algorithms, interpret results, and forecast outcomes with just a single click. Transition from raw data to valuable analytics seamlessly, without writing any code. Just upload your dataset, pose questions in everyday language, and receive the most effective model tailored to your data, which you can then easily share with others. Enhance customer productivity significantly, as we assist companies in harnessing no-code machine learning to elevate their customer experience and satisfaction levels. By simplifying the process, we enable organizations to focus on what truly matters—building strong relationships with their clients. -
22
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
23
C3 AI Suite
C3.ai
1 RatingCreate, launch, and manage Enterprise AI solutions effortlessly. The C3 AI® Suite employs a distinctive model-driven architecture that not only speeds up delivery but also simplifies the complexities associated with crafting enterprise AI solutions. This innovative architectural approach features an "abstraction layer," enabling developers to construct enterprise AI applications by leveraging conceptual models of all necessary components, rather than engaging in extensive coding. This methodology yields remarkable advantages: Implement AI applications and models that enhance operations for each product, asset, customer, or transaction across various regions and sectors. Experience the deployment of AI applications and witness results within just 1-2 quarters, enabling a swift introduction of additional applications and functionalities. Furthermore, unlock ongoing value—potentially amounting to hundreds of millions to billions of dollars annually—through cost reductions, revenue increases, and improved profit margins. Additionally, C3.ai’s comprehensive platform ensures systematic governance of AI across the enterprise, providing robust data lineage and oversight capabilities. This unified approach not only fosters efficiency but also promotes a culture of responsible AI usage within organizations. -
24
UpTrain
UpTrain
Obtain scores that assess factual accuracy, context retrieval quality, guideline compliance, tonality, among other metrics. Improvement is impossible without measurement. UpTrain consistently evaluates your application's performance against various criteria and notifies you of any declines, complete with automatic root cause analysis. This platform facilitates swift and effective experimentation across numerous prompts, model providers, and personalized configurations by generating quantitative scores that allow for straightforward comparisons and the best prompt selection. Hallucinations have been a persistent issue for LLMs since their early days. By measuring the extent of hallucinations and the quality of the retrieved context, UpTrain aids in identifying responses that lack factual correctness, ensuring they are filtered out before reaching end-users. Additionally, this proactive approach enhances the reliability of responses, fostering greater trust in automated systems. -
25
Zinia
Zinia
The Zinia AI platform effectively bridges the gap between key decision-makers in business and artificial intelligence solutions. Now, you can develop reliable AI models independently of technical teams while ensuring that these models align with your business goals. This innovative technology is designed to help you construct AI initiatives that start with business needs, significantly enhancing revenue by 15-20% and boosting efficiency by reducing the time required for AI implementation from several months to just days. Zinia focuses on optimizing business results through a human-centered approach to AI. Many organizations find that their AI development efforts do not align with their business key performance indicators. To tackle this critical issue, Zinia aims to democratize AI for everyone, putting advanced machine learning and AI technologies directly in your hands. With a team boasting over 50 years of expertise in AI, Zinia serves as a reliable platform that demystifies cutting-edge technology and paves the quickest route from data analysis to informed business decisions. By utilizing Zinia, organizations can foster a more integrated approach to AI that not only meets their immediate needs but also aligns with their long-term strategic vision. -
26
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups. -
27
Lightning AI
Lightning AI
$10 per creditLeverage our platform to create AI products, train, fine-tune, and deploy models in the cloud while eliminating concerns about infrastructure, cost management, scaling, and other technical challenges. With our prebuilt, fully customizable, and modular components, you can focus on the scientific aspects rather than the engineering complexities. A Lightning component organizes your code to operate efficiently in the cloud, autonomously managing infrastructure, cloud expenses, and additional requirements. Benefit from over 50 optimizations designed to minimize cloud costs and accelerate AI deployment from months to mere weeks. Enjoy the advantages of enterprise-grade control combined with the simplicity of consumer-level interfaces, allowing you to enhance performance, cut expenses, and mitigate risks effectively. Don’t settle for a mere demonstration; turn your ideas into reality by launching the next groundbreaking GPT startup, diffusion venture, or cloud SaaS ML service in just days. Empower your vision with our tools and take significant strides in the AI landscape. -
28
PredictSense
Winjit
PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort. -
29
RazorThink
RazorThink
RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills. -
30
Lamatic.ai
Lamatic.ai
$100 per monthIntroducing a comprehensive managed PaaS that features a low-code visual builder, VectorDB, along with integrations for various applications and models, designed for the creation, testing, and deployment of high-performance AI applications on the edge. This solution eliminates inefficient and error-prone tasks, allowing users to simply drag and drop models, applications, data, and agents to discover the most effective combinations. You can deploy solutions in less than 60 seconds while significantly reducing latency. The platform supports seamless observation, testing, and iteration processes, ensuring that you maintain visibility and utilize tools that guarantee precision and dependability. Make informed, data-driven decisions with detailed reports on requests, LLM interactions, and usage analytics, while also accessing real-time traces by node. The experimentation feature simplifies the optimization of various elements, including embeddings, prompts, and models, ensuring continuous enhancement. This platform provides everything necessary to launch and iterate at scale, backed by a vibrant community of innovative builders who share valuable insights and experiences. The collective effort distills the most effective tips and techniques for developing AI applications, resulting in an elegant solution that enables the creation of agentic systems with the efficiency of a large team. Furthermore, its intuitive and user-friendly interface fosters seamless collaboration and management of AI applications, making it accessible for everyone involved. -
31
Airtrain
Airtrain
FreeExplore and analyze a wide array of both open-source and proprietary AI models simultaneously. Replace expensive APIs with affordable custom AI solutions tailored for your needs. Adapt foundational models using your private data to ensure they meet your specific requirements. Smaller fine-tuned models can rival the performance of GPT-4 while being up to 90% more cost-effective. With Airtrain’s LLM-assisted scoring system, model assessment becomes straightforward by utilizing your task descriptions. You can deploy your personalized models through the Airtrain API, whether in the cloud or within your own secure environment. Assess and contrast both open-source and proprietary models throughout your complete dataset, focusing on custom attributes. Airtrain’s advanced AI evaluators enable you to score models based on various metrics for a completely tailored evaluation process. Discover which model produces outputs that comply with the JSON schema needed for your agents and applications. Your dataset will be evaluated against models using independent metrics that include length, compression, and coverage, ensuring a comprehensive analysis of performance. This way, you can make informed decisions based on your unique needs and operational context. -
32
Deeploy
Deeploy
Deeploy empowers users to maintain oversight of their machine learning models. With our responsible AI platform, you can effortlessly deploy your models while ensuring that transparency, control, and compliance are upheld. In today's landscape, the significance of transparency, explainability, and security in AI models cannot be overstated. By providing a secure environment for model deployment, you can consistently track your model's performance with assurance and responsibility. Throughout our journey, we have recognized the critical role that human involvement plays in the realm of machine learning. When machine learning systems are designed to be explainable and accountable, it enables both experts and consumers to offer valuable feedback, challenge decisions when warranted, and foster a sense of trust. This understanding is precisely why we developed Deeploy, to bridge the gap between advanced technology and human oversight. Ultimately, our mission is to facilitate a harmonious relationship between AI systems and their users, ensuring that ethical considerations are always at the forefront. -
33
Hive AutoML
Hive
Develop and implement deep learning models tailored to specific requirements. Our streamlined machine learning process empowers clients to design robust AI solutions using our top-tier models, customized to address their unique challenges effectively. Digital platforms can efficiently generate models that align with their specific guidelines and demands. Construct large language models for niche applications, including customer service and technical support chatbots. Additionally, develop image classification models to enhance the comprehension of image collections, facilitating improved search, organization, and various other applications, ultimately leading to more efficient processes and enhanced user experiences. -
34
LatticeFlow
LatticeFlow
Empower your machine learning teams to produce strong and efficient AI models by automatically diagnosing and enhancing your data and models. Our platform uniquely offers the ability to auto-diagnose both data and models, giving ML teams the tools they need to accelerate the delivery of effective AI solutions. It addresses challenges such as camera noise, sign stickers, shadows, and more, validated through real-world images where the model previously struggled. This approach has improved model accuracy by 0.2%, showcasing our commitment to refining AI performance. Our mission is to transform the development of future AI systems for widespread, trustworthy applications, whether in businesses, medical facilities, on the roads, or at home. Led by top AI professors and researchers from ETH Zurich, we possess extensive knowledge in formal methods, symbolic reasoning, and machine learning. We founded LatticeFlow with the ambition of creating the first-ever platform that empowers organizations to deploy AI models that are not only robust but also dependable in real-world scenarios, ensuring a higher standard for AI integration into daily life. By focusing on reliability and trust, we aim to set a new benchmark for the industry. -
35
Simplismart
Simplismart
Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness. - 36
-
37
FinetuneDB
FinetuneDB
Capture production data. Evaluate outputs together and fine-tune the performance of your LLM. A detailed log overview will help you understand what is happening in production. Work with domain experts, product managers and engineers to create reliable model outputs. Track AI metrics, such as speed, token usage, and quality scores. Copilot automates model evaluations and improvements for your use cases. Create, manage, or optimize prompts for precise and relevant interactions between AI models and users. Compare fine-tuned models and foundation models to improve prompt performance. Build a fine-tuning dataset with your team. Create custom fine-tuning data to optimize model performance. -
38
Hugging Face
Hugging Face
$9 per monthHugging Face is an AI community platform that provides state-of-the-art machine learning models, datasets, and APIs to help developers build intelligent applications. The platform’s extensive repository includes models for text generation, image recognition, and other advanced machine learning tasks. Hugging Face’s open-source ecosystem, with tools like Transformers and Tokenizers, empowers both individuals and enterprises to build, train, and deploy machine learning solutions at scale. It offers integration with major frameworks like TensorFlow and PyTorch for streamlined model development. -
39
AIxBlock
AIxBlock
$19 per monthAIxBlock is a MCP-based, decentralized end-to-end AI development and workflow automation platform purpose-built for AI engineer teams. It empowers users to build, train, deploy AI models and build AI automation workflows using those models through a unified environment that integrates decentralized compute, models, datasets, and labeling resources — all at a fraction of the traditional cost. AIxBlock is the modular AI ecosystem — purpose-built for custom model creation, workflow automation, and open interoperability across MCP client tools like Cursor, Claude, WindSurf, etc. Key Platform Capabilities - Data Engine - AI Training Infrastructure - Workflow Automation - Decentralized Marketplaces AIxBlock is now open-sourced, available on Github -
40
vishwa.ai
vishwa.ai
$39 per monthVishwa.ai, an AutoOps Platform for AI and ML Use Cases. It offers expert delivery, fine-tuning and monitoring of Large Language Models. Features: Expert Prompt Delivery : Tailored prompts tailored to various applications. Create LLM Apps without Coding: Create LLM workflows with our drag-and-drop UI. Advanced Fine-Tuning : Customization AI models. LLM Monitoring: Comprehensive monitoring of model performance. Integration and Security Cloud Integration: Supports Google Cloud (AWS, Azure), Azure, and Google Cloud. Secure LLM Integration - Safe connection with LLM providers Automated Observability for efficient LLM Management Managed Self Hosting: Dedicated hosting solutions. Access Control and Audits - Ensure secure and compliant operations. -
41
Predibase
Predibase
Declarative machine learning systems offer an ideal combination of flexibility and ease of use, facilitating the rapid implementation of cutting-edge models. Users concentrate on defining the “what” while the system autonomously determines the “how.” Though you can start with intelligent defaults, you have the freedom to adjust parameters extensively, even diving into code if necessary. Our team has been at the forefront of developing declarative machine learning systems in the industry, exemplified by Ludwig at Uber and Overton at Apple. Enjoy a selection of prebuilt data connectors designed for seamless compatibility with your databases, data warehouses, lakehouses, and object storage solutions. This approach allows you to train advanced deep learning models without the hassle of infrastructure management. Automated Machine Learning achieves a perfect equilibrium between flexibility and control, all while maintaining a declarative structure. By adopting this declarative method, you can finally train and deploy models at the speed you desire, enhancing productivity and innovation in your projects. The ease of use encourages experimentation, making it easier to refine models based on your specific needs. -
42
CognitiveScale Cortex AI
CognitiveScale
Creating AI solutions necessitates a robust engineering strategy that emphasizes resilience, openness, and repeatability to attain the required quality and agility. Up until now, these initiatives have lacked a solid foundation to tackle these issues amidst a multitude of specialized tools and the rapidly evolving landscape of models and data. A collaborative development platform is essential for automating the creation and management of AI applications that cater to various user roles. By extracting highly detailed customer profiles from organizational data, businesses can forecast behaviors in real-time and on a large scale. AI-driven models can be generated to facilitate continuous learning and to meet specific business objectives. This approach also allows organizations to clarify and demonstrate their compliance with relevant laws and regulations. CognitiveScale's Cortex AI Platform effectively addresses enterprise AI needs through a range of modular offerings. Customers can utilize and integrate its functionalities as microservices within their broader AI strategies, enhancing flexibility and responsiveness to their unique challenges. This comprehensive framework supports the ongoing evolution of AI development, ensuring that organizations can adapt to future demands. -
43
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
44
Graviti
Graviti
The future of artificial intelligence hinges on unstructured data. Embrace this potential now by creating a scalable ML/AI pipeline that consolidates all your unstructured data within a single platform. By leveraging superior data, you can develop enhanced models, exclusively with Graviti. Discover a data platform tailored for AI practitioners, equipped with management capabilities, query functionality, and version control specifically designed for handling unstructured data. Achieving high-quality data is no longer an unattainable aspiration. Centralize your metadata, annotations, and predictions effortlessly. Tailor filters and visualize the results to quickly access the data that aligns with your requirements. Employ a Git-like framework for version management and facilitate collaboration among your team members. With role-based access control and clear visual representations of version changes, your team can collaborate efficiently and securely. Streamline your data pipeline using Graviti’s integrated marketplace and workflow builder, allowing you to enhance model iterations without the tedious effort. This innovative approach not only saves time but also empowers teams to focus on creativity and problem-solving. -
45
Gradio
Gradio
Create and Share Engaging Machine Learning Applications. Gradio offers the quickest way to showcase your machine learning model through a user-friendly web interface, enabling anyone to access it from anywhere! You can easily install Gradio using pip. Setting up a Gradio interface involves just a few lines of code in your project. There are various interface types available to connect your function effectively. Gradio can be utilized in Python notebooks or displayed as a standalone webpage. Once you create an interface, it can automatically generate a public link that allows your colleagues to interact with the model remotely from their devices. Moreover, after developing your interface, you can host it permanently on Hugging Face. Hugging Face Spaces will take care of hosting the interface on their servers and provide you with a shareable link, ensuring your work is accessible to a wider audience. With Gradio, sharing your machine learning solutions becomes an effortless task!