Best Kimi K2 Thinking Alternatives in 2025
Find the top alternatives to Kimi K2 Thinking currently available. Compare ratings, reviews, pricing, and features of Kimi K2 Thinking alternatives in 2025. Slashdot lists the best Kimi K2 Thinking alternatives on the market that offer competing products that are similar to Kimi K2 Thinking. Sort through Kimi K2 Thinking alternatives below to make the best choice for your needs
-
1
Kimi K2
Moonshot AI
FreeKimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing. -
2
Qwen3-Max
Alibaba
FreeQwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models. -
3
DeepSeek-V2
DeepSeek
FreeDeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence. -
4
GLM-4.5
Z.ai
Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains. -
5
Qwen Code
Qwen
FreeQwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows. -
6
Ministral 8B
Mistral AI
FreeMistral AI has unveiled two cutting-edge models specifically designed for on-device computing and edge use cases, collectively referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models stand out due to their capabilities in knowledge retention, commonsense reasoning, function-calling, and overall efficiency, all while remaining within the sub-10B parameter range. They boast support for a context length of up to 128k, making them suitable for a diverse range of applications such as on-device translation, offline smart assistants, local analytics, and autonomous robotics. Notably, Ministral 8B incorporates an interleaved sliding-window attention mechanism, which enhances both the speed and memory efficiency of inference processes. Both models are adept at serving as intermediaries in complex multi-step workflows, skillfully managing functions like input parsing, task routing, and API interactions based on user intent, all while minimizing latency and operational costs. Benchmark results reveal that les Ministraux consistently exceed the performance of similar models across a variety of tasks, solidifying their position in the market. As of October 16, 2024, these models are now available for developers and businesses, with Ministral 8B being offered at a competitive rate of $0.1 for every million tokens utilized. This pricing structure enhances accessibility for users looking to integrate advanced AI capabilities into their solutions. -
7
Claude Sonnet 4.5
Anthropic
Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies. -
8
Qwen3-Coder
Qwen
FreeQwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently. -
9
Phi-4-reasoning
Microsoft
Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts. -
10
Phi-4-mini-flash-reasoning
Microsoft
Phi-4-mini-flash-reasoning is a 3.8 billion-parameter model that is part of Microsoft's Phi series, specifically designed for edge, mobile, and other environments with constrained resources where processing power, memory, and speed are limited. This innovative model features the SambaY hybrid decoder architecture, integrating Gated Memory Units (GMUs) with Mamba state-space and sliding-window attention layers, achieving up to ten times the throughput and a latency reduction of 2 to 3 times compared to its earlier versions without compromising on its ability to perform complex mathematical and logical reasoning. With a support for a context length of 64K tokens and being fine-tuned on high-quality synthetic datasets, it is particularly adept at handling long-context retrieval, reasoning tasks, and real-time inference, all manageable on a single GPU. Available through platforms such as Azure AI Foundry, NVIDIA API Catalog, and Hugging Face, Phi-4-mini-flash-reasoning empowers developers to create applications that are not only fast but also scalable and capable of intensive logical processing. This accessibility allows a broader range of developers to leverage its capabilities for innovative solutions. -
11
Phi-4-mini-reasoning
Microsoft
Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields. -
12
Ministral 3B
Mistral AI
FreeMistral AI has launched two cutting-edge models designed for on-device computing and edge applications, referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models redefine the standards of knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B category. They are versatile enough to be utilized or customized for a wide range of applications, including managing complex workflows and developing specialized task-focused workers. Capable of handling up to 128k context length (with the current version supporting 32k on vLLM), Ministral 8B also incorporates a unique interleaved sliding-window attention mechanism to enhance both speed and memory efficiency during inference. Designed for low-latency and compute-efficient solutions, these models excel in scenarios such as offline translation, smart assistants that don't rely on internet connectivity, local data analysis, and autonomous robotics. Moreover, when paired with larger language models like Mistral Large, les Ministraux can effectively function as streamlined intermediaries, facilitating function-calling within intricate multi-step workflows, thereby expanding their applicability across various domains. This combination not only enhances performance but also broadens the scope of what can be achieved with AI in edge computing. -
13
Grok 3 DeepSearch represents a sophisticated research agent and model aimed at enhancing the reasoning and problem-solving skills of artificial intelligence, emphasizing deep search methodologies and iterative reasoning processes. In contrast to conventional models that depend primarily on pre-existing knowledge, Grok 3 DeepSearch is equipped to navigate various pathways, evaluate hypotheses, and rectify inaccuracies in real-time, drawing from extensive datasets while engaging in logical, chain-of-thought reasoning. Its design is particularly suited for tasks necessitating critical analysis, including challenging mathematical equations, programming obstacles, and detailed academic explorations. As a state-of-the-art AI instrument, Grok 3 DeepSearch excels in delivering precise and comprehensive solutions through its distinctive deep search functionalities, rendering it valuable across both scientific and artistic disciplines. This innovative tool not only streamlines problem-solving but also fosters a deeper understanding of complex concepts.
-
14
DeepSeek-Coder-V2
DeepSeek
DeepSeek-Coder-V2 is an open-source model tailored for excellence in programming and mathematical reasoning tasks. Utilizing a Mixture-of-Experts (MoE) architecture, it boasts a staggering 236 billion total parameters, with 21 billion of those being activated per token, which allows for efficient processing and outstanding performance. Trained on a massive dataset comprising 6 trillion tokens, this model enhances its prowess in generating code and tackling mathematical challenges. With the ability to support over 300 programming languages, DeepSeek-Coder-V2 has consistently outperformed its competitors on various benchmarks. It is offered in several variants, including DeepSeek-Coder-V2-Instruct, which is optimized for instruction-based tasks, and DeepSeek-Coder-V2-Base, which is effective for general text generation. Additionally, the lightweight options, such as DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, cater to environments that require less computational power. These variations ensure that developers can select the most suitable model for their specific needs, making DeepSeek-Coder-V2 a versatile tool in the programming landscape. -
15
Magistral
Mistral AI
Magistral is the inaugural language model family from Mistral AI that emphasizes reasoning, offered in two variants: Magistral Small, a 24 billion parameter open-weight model accessible under Apache 2.0 via Hugging Face, and Magistral Medium, a more robust enterprise-grade version that can be accessed through Mistral's API, the Le Chat platform, and various major cloud marketplaces. Designed for specific domains, it excels in transparent, multilingual reasoning across diverse tasks such as mathematics, physics, structured calculations, programmatic logic, decision trees, and rule-based systems, generating outputs that follow a chain of thought in the user's preferred language, which can be easily tracked and validated. This release signifies a transition towards more compact yet highly effective transparent AI reasoning capabilities. Currently, Magistral Medium is in preview on platforms including Le Chat, the API, SageMaker, WatsonX, Azure AI, and Google Cloud Marketplace. Its design is particularly suited for general-purpose applications that necessitate extended thought processes and improved accuracy compared to traditional non-reasoning language models. The introduction of Magistral represents a significant advancement in the pursuit of sophisticated reasoning in AI applications. -
16
gpt-oss-120b
OpenAI
gpt-oss-120b is a text-only reasoning model with 120 billion parameters, released under the Apache 2.0 license and managed by OpenAI’s usage policy, developed with insights from the open-source community and compatible with the Responses API. It is particularly proficient in following instructions, utilizing tools like web search and Python code execution, and allowing for adjustable reasoning effort, thereby producing comprehensive chain-of-thought and structured outputs that can be integrated into various workflows. While it has been designed to adhere to OpenAI's safety policies, its open-weight characteristics present a risk that skilled individuals might fine-tune it to circumvent these safeguards, necessitating that developers and enterprises apply additional measures to ensure safety comparable to that of hosted models. Evaluations indicate that gpt-oss-120b does not achieve high capability thresholds in areas such as biological, chemical, or cyber domains, even following adversarial fine-tuning. Furthermore, its release is not seen as a significant leap forward in biological capabilities, marking a cautious approach to its deployment. As such, users are encouraged to remain vigilant about the potential implications of its open-weight nature. -
17
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
18
Command A Reasoning
Cohere AI
Cohere’s Command A Reasoning stands as the company’s most sophisticated language model, specifically designed for complex reasoning tasks and effortless incorporation into AI agent workflows. This model exhibits outstanding reasoning capabilities while ensuring efficiency and controllability, enabling it to scale effectively across multiple GPU configurations and accommodating context windows of up to 256,000 tokens, which is particularly advantageous for managing extensive documents and intricate agentic tasks. Businesses can adjust the precision and speed of outputs by utilizing a token budget, which empowers a single model to adeptly address both precise and high-volume application needs. It serves as the backbone for Cohere’s North platform, achieving top-tier benchmark performance and showcasing its strengths in multilingual applications across 23 distinct languages. With an emphasis on safety in enterprise settings, the model strikes a balance between utility and strong protections against harmful outputs. Additionally, a streamlined deployment option allows the model to operate securely on a single H100 or A100 GPU, making private and scalable implementations more accessible. Ultimately, this combination of features positions Command A Reasoning as a powerful solution for organizations aiming to enhance their AI-driven capabilities. -
19
Phi-4-reasoning-plus
Microsoft
Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models. -
20
gpt-oss-20b
OpenAI
gpt-oss-20b is a powerful text-only reasoning model consisting of 20 billion parameters, made available under the Apache 2.0 license and influenced by OpenAI’s gpt-oss usage guidelines, designed to facilitate effortless integration into personalized AI workflows through the Responses API without depending on proprietary systems. It has been specifically trained to excel in instruction following and offers features like adjustable reasoning effort, comprehensive chain-of-thought outputs, and the ability to utilize native tools such as web search and Python execution, resulting in structured and clear responses. Developers are responsible for establishing their own deployment precautions, including input filtering, output monitoring, and adherence to usage policies, to ensure that they align with the protective measures typically found in hosted solutions and to reduce the chance of malicious or unintended actions. Additionally, its open-weight architecture makes it particularly suitable for on-premises or edge deployments, emphasizing the importance of control, customization, and transparency to meet specific user needs. This flexibility allows organizations to tailor the model according to their unique requirements while maintaining a high level of operational integrity. -
21
Gemini 2.0 Flash Thinking
Google
Gemini 2.0 Flash Thinking is an innovative artificial intelligence model created by Google DeepMind, aimed at improving reasoning abilities through the clear articulation of its thought processes. This openness enables the model to address intricate challenges more efficiently while offering users straightforward insights into its decision-making journey. By revealing its internal reasoning, Gemini 2.0 Flash Thinking not only boosts performance but also enhances explainability, rendering it an essential resource for applications that necessitate a profound comprehension and confidence in AI-driven solutions. Furthermore, this approach fosters a deeper relationship between users and the technology, as it demystifies the workings of AI. -
22
DBRX
Databricks
We are thrilled to present DBRX, a versatile open LLM developed by Databricks. This innovative model achieves unprecedented performance on a variety of standard benchmarks, setting a new benchmark for existing open LLMs. Additionally, it equips both the open-source community and enterprises crafting their own LLMs with features that were once exclusive to proprietary model APIs; our evaluations indicate that it outperforms GPT-3.5 and competes effectively with Gemini 1.0 Pro. Notably, it excels as a code model, outperforming specialized counterparts like CodeLLaMA-70B in programming tasks, while also demonstrating its prowess as a general-purpose LLM. The remarkable quality of DBRX is complemented by significant enhancements in both training and inference efficiency. Thanks to its advanced fine-grained mixture-of-experts (MoE) architecture, DBRX elevates the efficiency of open models to new heights. In terms of inference speed, it can be twice as fast as LLaMA2-70B, and its total and active parameter counts are approximately 40% of those in Grok-1, showcasing its compact design without compromising capability. This combination of speed and size makes DBRX a game-changer in the landscape of open AI models. -
23
NVIDIA Llama Nemotron
NVIDIA
The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems. -
24
DeepSeek R2
DeepSeek
FreeDeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries. -
25
Nomic Embed
Nomic
FreeNomic Embed is a comprehensive collection of open-source, high-performance embedding models tailored for a range of uses, such as multilingual text processing, multimodal content integration, and code analysis. Among its offerings, Nomic Embed Text v2 employs a Mixture-of-Experts (MoE) architecture that efficiently supports more than 100 languages with a remarkable 305 million active parameters, ensuring fast inference. Meanwhile, Nomic Embed Text v1.5 introduces flexible embedding dimensions ranging from 64 to 768 via Matryoshka Representation Learning, allowing developers to optimize for both performance and storage requirements. In the realm of multimodal applications, Nomic Embed Vision v1.5 works in conjunction with its text counterparts to create a cohesive latent space for both text and image data, enhancing the capability for seamless multimodal searches. Furthermore, Nomic Embed Code excels in embedding performance across various programming languages, making it an invaluable tool for developers. This versatile suite of models not only streamlines workflows but also empowers developers to tackle a diverse array of challenges in innovative ways. -
26
Hunyuan-Vision-1.5
Tencent
FreeHunyuanVision, an innovative vision-language model created by Tencent's Hunyuan team, employs a mamba-transformer hybrid architecture that excels in performance and offers efficient inference for multimodal reasoning challenges. The latest iteration, Hunyuan-Vision-1.5, focuses on the concept of “thinking on images,” enabling it to not only comprehend the interplay of visual and linguistic content but also engage in advanced reasoning that includes tasks like cropping, zooming, pointing, box drawing, or annotating images for enhanced understanding. This model is versatile, supporting various vision tasks such as image and video recognition, OCR, and diagram interpretation, in addition to facilitating visual reasoning and 3D spatial awareness, all within a cohesive multilingual framework. Designed for compatibility across different languages and tasks, HunyuanVision aims to be open-sourced, providing access to checkpoints, a technical report, and inference support to foster community engagement and experimentation. Ultimately, this initiative encourages researchers and developers to explore and leverage the model's capabilities in diverse applications. -
27
Mistral NeMo
Mistral AI
FreeIntroducing Mistral NeMo, our latest and most advanced small model yet, featuring a cutting-edge 12 billion parameters and an expansive context length of 128,000 tokens, all released under the Apache 2.0 license. Developed in partnership with NVIDIA, Mistral NeMo excels in reasoning, world knowledge, and coding proficiency within its category. Its architecture adheres to industry standards, making it user-friendly and a seamless alternative for systems currently utilizing Mistral 7B. To facilitate widespread adoption among researchers and businesses, we have made available both pre-trained base and instruction-tuned checkpoints under the same Apache license. Notably, Mistral NeMo incorporates quantization awareness, allowing for FP8 inference without compromising performance. The model is also tailored for diverse global applications, adept in function calling and boasting a substantial context window. When compared to Mistral 7B, Mistral NeMo significantly outperforms in understanding and executing detailed instructions, showcasing enhanced reasoning skills and the ability to manage complex multi-turn conversations. Moreover, its design positions it as a strong contender for multi-lingual tasks, ensuring versatility across various use cases. -
28
K2 Think
Institute of Foundation Models
FreeK2 Think represents a groundbreaking open-source advanced reasoning model that has been developed in collaboration between the Institute of Foundation Models at MBZUAI and G42. Even with its relatively modest 32 billion parameters, K2 Think achieves performance that rivals that of leading models with significantly larger parameter counts. Its strength lies in mathematical reasoning, where it has secured top rankings on prestigious benchmarks such as AIME ’24/’25, HMMT ’25, and OMNI-Math-HARD. This model is part of a wider initiative of UAE-developed open models, which includes Jais (for Arabic), NANDA (for Hindi), and SHERKALA (for Kazakh), and it builds upon the groundwork established by the K2-65B, a fully reproducible open-source foundation model released in 2024. K2 Think is crafted to be open, efficient, and adaptable, featuring a web app interface that facilitates user exploration, and its innovative approach to parameter positioning marks a significant advancement in the realm of compact architectures for high-level AI reasoning. Additionally, its development highlights a commitment to enhancing access to state-of-the-art AI technologies in various languages and domains. -
29
Holo2
H Company
The Holo2 model family from H Company offers a blend of affordability and high performance in vision-language models specifically designed for computer-based agents that can navigate, localize user interface elements, and function across web, desktop, and mobile platforms. This new series, which is available in sizes of 4 billion, 8 billion, and 30 billion parameters, builds upon the foundations laid by the earlier Holo1 and Holo1.5 models, ensuring strong grounding in user interfaces while making substantial improvements to navigation abilities. Utilizing a mixture-of-experts (MoE) architecture, the Holo2 models activate only the necessary parameters to maximize operational efficiency. These models have been trained on carefully curated datasets focused on localization and agent functionality, allowing them to seamlessly replace their predecessors. They provide support for effortless inference in environments compatible with Qwen3-VL models and can be easily incorporated into agentic workflows such as Surfer 2. In benchmark evaluations, the Holo2-30B-A3B model demonstrated impressive results, achieving 66.1% accuracy on the ScreenSpot-Pro test and 76.1% on the OSWorld-G benchmark, thereby establishing itself as the leader in the UI localization sector. Additionally, the advancements in the Holo2 models make them a compelling choice for developers looking to enhance the efficiency and performance of their applications. -
30
DeepSeek R1
DeepSeek
Free 1 RatingDeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains. -
31
Chat Stream
Chat Stream
Chat Stream offers users the opportunity to tap into two robust language models developed by DeepSeek, showcasing their impressive capabilities. The models, DeepSeek V3 and R1, contain a staggering 671 billion parameters, with 37 billion activated per token, and consistently achieve remarkable benchmark performances, such as MMLU at 87.1% and BBH at 87.5%. With an extensive context window length of 128K, these models excel in tasks like code generation, complex mathematical computations, and processing multiple languages. Technically, they leverage an advanced Mixture-of-Experts (MoE) architecture, utilize Multi-head Latent Attention (MLA), feature auxiliary-loss-free load balancing, and implement a multi-token prediction objective to enhance performance. Deployment is versatile, providing a web-based chat interface for immediate access, easy integration into websites through iframes, and dedicated mobile applications for both iOS and Android devices. Furthermore, the models are compatible with various hardware, including NVIDIA, AMD GPUs, and Huawei Ascend NPUs, allowing for both local inference and cloud-based deployment. Users can benefit from different access methods, including free chat without the need for registration, website embedding options, mobile app usage, and a premium subscription that offers an ad-free experience, ensuring flexibility and accessibility for all. -
32
GPT-5.1 Thinking
OpenAI
GPT-5.1 Thinking represents an evolved reasoning model within the GPT-5.1 lineup, engineered to optimize "thinking time" allocation according to the complexity of prompts, allowing for quicker responses to straightforward inquiries while dedicating more resources to tackle challenging issues. In comparison to its earlier version, it demonstrates approximately double the speed on simpler tasks and takes twice as long for more complex ones. The model emphasizes clarity in its responses, minimizing the use of jargon and undefined terminology, which enhances the accessibility and comprehensibility of intricate analytical tasks. It adeptly modifies its reasoning depth, ensuring a more effective equilibrium between rapidity and thoroughness, especially when addressing technical subjects or multi-step inquiries. By fusing substantial reasoning power with enhanced clarity, GPT-5.1 Thinking emerges as an invaluable asset for handling complicated assignments, including in-depth analysis, programming, research, or technical discussions, while simultaneously decreasing unnecessary delays for routine requests. This improved efficiency not only benefits users seeking quick answers but also supports those engaged in more demanding cognitive tasks. -
33
Gemini 2.5 Pro Deep Think
Google
Gemini 2.5 Pro Deep Think is the latest evolution of Google’s Gemini models, specifically designed to tackle more complex tasks with better accuracy and efficiency. The key feature of Deep Think enables the AI to think through its responses, improving its reasoning and enhancing decision-making processes. This model is a game-changer for coding, problem-solving, and AI-driven conversations, with support for multimodality, long context windows, and advanced coding capabilities. It integrates native audio outputs for richer, more expressive interactions and is optimized for speed and accuracy across various benchmarks. With the addition of this advanced reasoning mode, Gemini 2.5 Pro Deep Think is not just faster but also smarter, handling complex queries with ease. -
34
MiniMax M2
MiniMax
$0.30 per million input tokensMiniMax M2 is an open-source foundational model tailored for agent-driven applications and coding tasks, achieving an innovative equilibrium of efficiency, velocity, and affordability. It shines in comprehensive development environments, adeptly managing programming tasks, invoking tools, and executing intricate, multi-step processes, complete with features like Python integration, while offering impressive inference speeds of approximately 100 tokens per second and competitive API pricing at around 8% of similar proprietary models. The model includes a "Lightning Mode" designed for rapid, streamlined agent operations, alongside a "Pro Mode" aimed at thorough full-stack development, report creation, and the orchestration of web-based tools; its weights are entirely open source, allowing for local deployment via vLLM or SGLang. MiniMax M2 stands out as a model ready for production use, empowering agents to autonomously perform tasks such as data analysis, software development, tool orchestration, and implementing large-scale, multi-step logic across real organizational contexts. With its advanced capabilities, this model is poised to revolutionize the way developers approach complex programming challenges. -
35
EXAONE Deep
LG
FreeEXAONE Deep represents a collection of advanced language models that are enhanced for reasoning, created by LG AI Research, and come in sizes of 2.4 billion, 7.8 billion, and 32 billion parameters. These models excel in a variety of reasoning challenges, particularly in areas such as mathematics and coding assessments. Significantly, the EXAONE Deep 2.4B model outshines other models of its size, while the 7.8B variant outperforms both open-weight models of similar dimensions and the proprietary reasoning model known as OpenAI o1-mini. Furthermore, the EXAONE Deep 32B model competes effectively with top-tier open-weight models in the field. The accompanying repository offers extensive documentation that includes performance assessments, quick-start guides for leveraging EXAONE Deep models with the Transformers library, detailed explanations of quantized EXAONE Deep weights formatted in AWQ and GGUF, as well as guidance on how to run these models locally through platforms like llama.cpp and Ollama. Additionally, this resource serves to enhance user understanding and accessibility to the capabilities of EXAONE Deep models. -
36
NEO
NEO
NEO functions as an autonomous machine learning engineer, embodying a multi-agent system designed to seamlessly automate the complete ML workflow, allowing teams to assign data engineering, model development, evaluation, deployment, and monitoring tasks to an intelligent pipeline while retaining oversight and control. This system integrates sophisticated multi-step reasoning, memory management, and adaptive inference to address intricate challenges from start to finish, which includes tasks like validating and cleaning data, model selection and training, managing edge-case failures, assessing candidate behaviors, and overseeing deployments, all while incorporating human-in-the-loop checkpoints and customizable control mechanisms. NEO is engineered to learn continuously from outcomes, preserving context throughout various experiments, and delivering real-time updates on readiness, performance, and potential issues, effectively establishing a self-sufficient ML engineering framework that uncovers insights and mitigates common friction points such as conflicting configurations and outdated artifacts. Furthermore, this innovative approach liberates engineers from monotonous tasks, empowering them to focus on more strategic initiatives and fostering a more efficient workflow overall. Ultimately, NEO represents a significant advancement in the field of machine learning engineering, driving enhanced productivity and innovation within teams. -
37
BitNet
Microsoft
FreeMicrosoft’s BitNet b1.58 2B4T is a breakthrough in AI with its native 1-bit LLM architecture. This model has been optimized for computational efficiency, offering significant reductions in memory, energy, and latency while still achieving high performance on various AI benchmarks. It supports a range of natural language processing tasks, making it an ideal solution for scalable and cost-effective AI implementations in industries requiring fast, energy-efficient inference and robust language capabilities. -
38
Portia
Portia
$30 per monthPortia AI is an open-source developer framework that includes optional cloud services, enabling teams to quickly create, deploy, and oversee stateful, authenticated AI agents while maintaining full visibility and control over the process. Developers initiate the process by using the SDK to generate clear, organized multi-step "plans" that integrate LLM reasoning with various tool calls, executing these plans incrementally and enhancing the plan state at each step, while also allowing for pauses to seek clarifications, whether from human users or machine inputs, when authentication or additional information is necessary. With its cohesive authentication framework and an easily customizable tool catalog, Portia automatically manages the credentials and permissions needed for remote API and MCP tool calls. Furthermore, the accompanying cloud solution provides persistent storage for plan execution states, historical log tracking, telemetry dashboards, and managed scaling, ensuring that production deployments remain dependable, traceable, and compliant with regulatory standards. This comprehensive approach not only simplifies the development process but also enhances the overall efficiency and effectiveness of AI agent deployments. -
39
Yi-Lightning
Yi-Lightning
Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field. -
40
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
41
Cisco AgenticOps
Cisco
AgenticOps represents a revolutionary approach that is reshaping enterprise IT operations to align with the requirements of an AI-centric future, utilizing AI agents to convert real-time telemetry, automation, and extensive domain expertise into smart, comprehensive actions that manage workflows across networking, security, and applications within a cohesive platform. Central to this innovation is Cisco’s Deep Network Model, a specialized large language model developed from over four decades of Cisco knowledge, which includes CCIE-level insights, CiscoU educational materials, and practical operational experiences, and has been enhanced through reinforcement learning, chain-of-thought reasoning, and test-time scaling to ensure both accuracy and speed. This sophisticated engine drives AI Canvas, the first generative user interface designed specifically for cross-domain IT operations, which synthesizes live telemetry data into a smart workspace. Users benefit from the integrated Cisco AI Assistant, enabling them to engage in natural language conversations to troubleshoot problems, investigate alternatives, identify root causes, and take corrective measures. This seamless integration of various functionalities enhances operational efficiency, allowing teams to respond swiftly and effectively to evolving challenges. Ultimately, the combination of these advanced technologies paves the way for a more agile and responsive IT environment. -
42
Genie 3
DeepMind
Genie 3 represents DeepMind's innovative leap in general-purpose world modeling, capable of real-time generation of immersive 3D environments at 720p resolution and 24 frames per second, maintaining consistency for several minutes. When provided with textual prompts, this advanced system fabricates interactive virtual landscapes that allow users and embodied agents to explore and engage with natural occurrences from various viewpoints, including first-person and isometric perspectives. One of its remarkable capabilities is the emergent long-horizon visual memory, which ensures that environmental details remain consistent even over lengthy interactions, retaining off-screen elements and spatial coherence when revisited. Additionally, Genie 3 features “promptable world events,” granting users the ability to dynamically alter scenes, such as modifying weather conditions or adding new objects as desired. Tailored for research involving embodied agents, Genie 3 works in harmony with systems like SIMA, enhancing navigation based on specific goals and enabling the execution of intricate tasks. This level of interactivity and adaptability marks a significant advancement in how virtual environments can be experienced and manipulated. -
43
Groq
Groq
Groq aims to establish a benchmark for the speed of GenAI inference, facilitating the realization of real-time AI applications today. The newly developed LPU inference engine, which stands for Language Processing Unit, represents an innovative end-to-end processing system that ensures the quickest inference for demanding applications that involve a sequential aspect, particularly AI language models. Designed specifically to address the two primary bottlenecks faced by language models—compute density and memory bandwidth—the LPU surpasses both GPUs and CPUs in its computing capabilities for language processing tasks. This advancement significantly decreases the processing time for each word, which accelerates the generation of text sequences considerably. Moreover, by eliminating external memory constraints, the LPU inference engine achieves exponentially superior performance on language models compared to traditional GPUs. Groq's technology also seamlessly integrates with widely used machine learning frameworks like PyTorch, TensorFlow, and ONNX for inference purposes. Ultimately, Groq is poised to revolutionize the landscape of AI language applications by providing unprecedented inference speeds. -
44
Amazon Elastic Inference
Amazon
Amazon Elastic Inference provides an affordable way to enhance Amazon EC2 and Sagemaker instances or Amazon ECS tasks with GPU-powered acceleration, potentially cutting deep learning inference costs by as much as 75%. It is compatible with models built on TensorFlow, Apache MXNet, PyTorch, and ONNX. The term "inference" refers to the act of generating predictions from a trained model. In the realm of deep learning, inference can represent up to 90% of the total operational expenses, primarily for two reasons. Firstly, GPU instances are generally optimized for model training rather than inference, as training tasks can handle numerous data samples simultaneously, while inference typically involves processing one input at a time in real-time, resulting in minimal GPU usage. Consequently, relying solely on GPU instances for inference can lead to higher costs. Conversely, CPU instances lack the necessary specialization for matrix computations, making them inefficient and often too sluggish for deep learning inference tasks. This necessitates a solution like Elastic Inference, which optimally balances cost and performance in inference scenarios. -
45
NVIDIA NeMo Megatron
NVIDIA
NVIDIA NeMo Megatron serves as a comprehensive framework designed for the training and deployment of large language models (LLMs) that can range from billions to trillions of parameters. As a integral component of the NVIDIA AI platform, it provides a streamlined, efficient, and cost-effective solution in a containerized format for constructing and deploying LLMs. Tailored for enterprise application development, the framework leverages cutting-edge technologies stemming from NVIDIA research and offers a complete workflow that automates distributed data processing, facilitates the training of large-scale custom models like GPT-3, T5, and multilingual T5 (mT5), and supports model deployment for large-scale inference. The process of utilizing LLMs becomes straightforward with the availability of validated recipes and predefined configurations that streamline both training and inference. Additionally, the hyperparameter optimization tool simplifies the customization of models by automatically exploring the optimal hyperparameter configurations, enhancing performance for training and inference across various distributed GPU cluster setups. This approach not only saves time but also ensures that users can achieve superior results with minimal effort.