What Integrates with Kestra?
Find out what Kestra integrations exist in 2025. Learn what software and services currently integrate with Kestra, and sort them by reviews, cost, features, and more. Below is a list of products that Kestra currently integrates with:
-
1
dbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use. With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations.
-
2
Docker streamlines tedious configuration processes and is utilized across the entire development lifecycle, facilitating swift, simple, and portable application creation on both desktop and cloud platforms. Its all-encompassing platform features user interfaces, command-line tools, application programming interfaces, and security measures designed to function cohesively throughout the application delivery process. Jumpstart your programming efforts by utilizing Docker images to craft your own distinct applications on both Windows and Mac systems. With Docker Compose, you can build multi-container applications effortlessly. Furthermore, it seamlessly integrates with tools you already use in your development workflow, such as VS Code, CircleCI, and GitHub. You can package your applications as portable container images, ensuring they operate uniformly across various environments, from on-premises Kubernetes to AWS ECS, Azure ACI, Google GKE, and beyond. Additionally, Docker provides access to trusted content, including official Docker images and those from verified publishers, ensuring quality and reliability in your application development journey. This versatility and integration make Docker an invaluable asset for developers aiming to enhance their productivity and efficiency.
-
3
Kubernetes
Kubernetes
Free 1 RatingKubernetes (K8s) is a powerful open-source platform designed to automate the deployment, scaling, and management of applications that are containerized. By organizing containers into manageable groups, it simplifies the processes of application management and discovery. Drawing from over 15 years of experience in handling production workloads at Google, Kubernetes also incorporates the best practices and innovative ideas from the wider community. Built on the same foundational principles that enable Google to efficiently manage billions of containers weekly, it allows for scaling without necessitating an increase in operational personnel. Whether you are developing locally or operating a large-scale enterprise, Kubernetes adapts to your needs, providing reliable and seamless application delivery regardless of complexity. Moreover, being open-source, Kubernetes offers the flexibility to leverage on-premises, hybrid, or public cloud environments, facilitating easy migration of workloads to the most suitable infrastructure. This adaptability not only enhances operational efficiency but also empowers organizations to respond swiftly to changing demands in their environments. -
4
MongoDB
MongoDB
Free 21 RatingsMongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges. -
5
Git
Git
Free 12 RatingsGit is a powerful and freely available distributed version control system that is built to manage projects of any size swiftly and effectively. Its user-friendly nature and minimal resource requirements contribute to its remarkable speed. Git surpasses traditional source control management tools such as Subversion, CVS, Perforce, and ClearCase by offering advantages like inexpensive local branching, user-friendly staging areas, and diverse workflow options. Additionally, you can interact with configurations through this command, where the name represents the section and the key separated by a dot, while the value is appropriately escaped. This versatility in handling version control makes Git an essential tool for developers and teams alike. -
6
MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
-
7
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
8
OpenAI aims to guarantee that artificial general intelligence (AGI)—defined as highly autonomous systems excelling beyond human capabilities in most economically significant tasks—serves the interests of all humanity. While we intend to develop safe and advantageous AGI directly, we consider our mission successful if our efforts support others in achieving this goal. You can utilize our API for a variety of language-related tasks, including semantic search, summarization, sentiment analysis, content creation, translation, and beyond, all with just a few examples or by clearly stating your task in English. A straightforward integration provides you with access to our continuously advancing AI technology, allowing you to explore the API’s capabilities through these illustrative completions and discover numerous potential applications.
-
9
At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
-
10
Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
-
11
Elasticsearch
Elastic
1 RatingElastic is a search company. Elasticsearch, Kibana Beats, Logstash, and Elasticsearch are the founders of the ElasticStack. These SaaS offerings allow data to be used in real-time and at scale for analytics, security, search, logging, security, and search. Elastic has over 100,000 members in 45 countries. Elastic's products have been downloaded more than 400 million times since their initial release. Today, thousands of organizations including Cisco, eBay and Dell, Goldman Sachs and Groupon, HP and Microsoft, as well as Netflix, Uber, Verizon and Yelp use Elastic Stack and Elastic Cloud to power mission critical systems that generate new revenue opportunities and huge cost savings. Elastic is headquartered in Amsterdam, The Netherlands and Mountain View, California. It has more than 1,000 employees in over 35 countries. -
12
Apache Cassandra
Apache Software Foundation
1 RatingWhen seeking a database that ensures both scalability and high availability without sacrificing performance, Apache Cassandra stands out as an ideal option. Its linear scalability paired with proven fault tolerance on standard hardware or cloud services positions it as an excellent choice for handling mission-critical data effectively. Additionally, Cassandra's superior capability to replicate data across several datacenters not only enhances user experience by reducing latency but also offers reassurance in the event of regional failures. This combination of features makes it a robust solution for organizations that prioritize data resilience and efficiency. -
13
PowerShell
Microsoft
Free 1 RatingPowerShell serves as a versatile task automation and configuration management framework that operates across various platforms and is comprised of both a command-line shell and a scripting language. Distinct from typical shells that primarily handle text, PowerShell is founded on the .NET Common Language Runtime (CLR), allowing it to work with .NET objects instead. This core distinction introduces a range of innovative tools and techniques for automating tasks. Unlike conventional command-line interfaces, PowerShell cmdlets are specifically crafted to manipulate objects rather than mere text. An object represents organized information that transcends the simple string of characters displayed on your screen. The output generated by commands always includes additional metadata that can be leveraged when necessary. If you've utilized text-processing tools previously, you'll notice that their functionality differs when employed within PowerShell. Generally, there is no need for separate text-processing utilities to obtain specific information, as you can directly interact with segments of the data using the standard PowerShell object syntax. This capability enhances the user experience by allowing for more intuitive and powerful data manipulation. -
14
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
15
ClickHouse
ClickHouse
1 RatingClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads. -
16
Node
Node Technologies
$19 per monthNode is a business management tool that allows you to visualize content according to different activity areas. It also provides a secure digital connection across the network. -
17
Weaviate
Weaviate
FreeWeaviate serves as an open-source vector database that empowers users to effectively store data objects and vector embeddings derived from preferred ML models, effortlessly scaling to accommodate billions of such objects. Users can either import their own vectors or utilize the available vectorization modules, enabling them to index vast amounts of data for efficient searching. By integrating various search methods, including both keyword-based and vector-based approaches, Weaviate offers cutting-edge search experiences. Enhancing search outcomes can be achieved by integrating LLM models like GPT-3, which contribute to the development of next-generation search functionalities. Beyond its search capabilities, Weaviate's advanced vector database supports a diverse array of innovative applications. Users can conduct rapid pure vector similarity searches over both raw vectors and data objects, even when applying filters. The flexibility to merge keyword-based search with vector techniques ensures top-tier results while leveraging any generative model in conjunction with their data allows users to perform complex tasks, such as conducting Q&A sessions over the dataset, further expanding the potential of the platform. In essence, Weaviate not only enhances search capabilities but also inspires creativity in app development. -
18
Trino
Trino
FreeTrino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape. -
19
Coginiti
Coginiti
$189/user/ year Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers. -
20
Airbyte
Airbyte
$2.50 per creditAirbyte is a data integration platform that operates on an open-source model, aimed at assisting organizations in unifying data from diverse sources into their data lakes, warehouses, or databases. With an extensive library of over 550 ready-made connectors, it allows users to craft custom connectors with minimal coding through low-code or no-code solutions. The platform is specifically designed to facilitate the movement of large volumes of data, thereby improving artificial intelligence processes by efficiently incorporating unstructured data into vector databases such as Pinecone and Weaviate. Furthermore, Airbyte provides adaptable deployment options, which help maintain security, compliance, and governance across various data models, making it a versatile choice for modern data integration needs. This capability is essential for businesses looking to enhance their data-driven decision-making processes. -
21
Apache Groovy
The Apache Software Foundation
FreeApache Groovy is an immensely versatile language that offers optional typing and dynamic capabilities, along with the option for static typing and compilation, designed for the Java ecosystem to enhance developer efficiency through its succinct, familiar, and accessible syntax. It seamlessly integrates with any Java application, providing a wealth of features such as scripting abilities, the creation of Domain-Specific Languages (DSLs), both runtime and compile-time meta-programming, as well as functional programming options. Its syntax is not only concise and expressive but also straightforward for Java programmers to pick up. Key features include closures, builders, versatile meta-programming, type inference, and static compilation. With a flexible and adaptable syntax, Groovy comes equipped with advanced integration and customization tools, making it easy to incorporate clear business rules into your software. It is particularly effective for crafting concise and maintainable test cases, in addition to streamlining various build and automation processes, thereby solidifying its role as an essential tool for developers. Overall, Groovy's capabilities make it an ideal choice for enhancing both productivity and code readability in Java-based projects. -
22
Julia
Julia
FreeFrom its inception, Julia was crafted for optimal performance. Programs written in Julia compile into efficient native code across various platforms through the LLVM framework. Utilizing multiple dispatch as its foundational paradigm, Julia simplifies the representation of numerous object-oriented and functional programming concepts. The discussion on the Remarkable Effectiveness of Multiple Dispatch sheds light on its exceptional performance. Julia features dynamic typing, giving it a scripting language feel, while also supporting interactive sessions effectively. Furthermore, Julia includes capabilities for asynchronous I/O, metaprogramming, debugging, logging, profiling, and a package manager, among other features. Developers can create entire applications and microservices using Julia's robust ecosystem. This open-source project boasts contributions from over 1,000 developers and is licensed under the MIT License, emphasizing its community-driven nature. Overall, Julia’s combination of performance and flexibility makes it a powerful tool for modern programming needs. -
23
OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
-
24
Fivetran
Fivetran
Fivetran is a comprehensive data integration solution designed to centralize and streamline data movement for organizations of all sizes. With more than 700 pre-built connectors, it effortlessly transfers data from SaaS apps, databases, ERPs, and files into data warehouses and lakes, enabling real-time analytics and AI-driven insights. The platform’s scalable pipelines automatically adapt to growing data volumes and business complexity. Leading companies such as Dropbox, JetBlue, Pfizer, and National Australia Bank rely on Fivetran to reduce data ingestion time from weeks to minutes and improve operational efficiency. Fivetran offers strong security compliance with certifications including SOC 1 & 2, GDPR, HIPAA, ISO 27001, PCI DSS, and HITRUST. Users can programmatically create and manage pipelines through its REST API for seamless extensibility. The platform supports governance features like role-based access controls and integrates with transformation tools like dbt Labs. Fivetran helps organizations innovate by providing reliable, secure, and automated data pipelines tailored to their evolving needs. -
25
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
26
Couchbase
Couchbase
Couchbase distinguishes itself from other NoSQL databases by delivering an enterprise-grade, multicloud to edge solution that is equipped with the powerful features essential for mission-critical applications on a platform that is both highly scalable and reliable. This distributed cloud-native database operates seamlessly in contemporary dynamic settings, accommodating any cloud environment, whether it be customer-managed or a fully managed service. Leveraging open standards, Couchbase merges the advantages of NoSQL with the familiar structure of SQL, thereby facilitating a smoother transition from traditional mainframe and relational databases. Couchbase Server serves as a versatile, distributed database that integrates the benefits of relational database capabilities, including SQL and ACID transactions, with the adaptability of JSON, all built on a foundation that is remarkably fast and scalable. Its applications span various industries, catering to needs such as user profiles, dynamic product catalogs, generative AI applications, vector search, high-speed caching, and much more, making it an invaluable asset for organizations seeking efficiency and innovation. -
27
Neo4j
Neo4j
Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database. -
28
PostgreSQL
PostgreSQL Global Development Group
PostgreSQL stands out as a highly capable, open-source object-relational database system that has been actively developed for more than three decades, earning a solid reputation for its reliability, extensive features, and impressive performance. Comprehensive resources for installation and usage are readily available in the official documentation, which serves as an invaluable guide for both new and experienced users. Additionally, the open-source community fosters numerous forums and platforms where individuals can learn about PostgreSQL, understand its functionalities, and explore job opportunities related to it. Engaging with this community can enhance your knowledge and connection to the PostgreSQL ecosystem. Recently, the PostgreSQL Global Development Group announced updates for all supported versions, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23, which address 25 reported bugs from the past few months. Notably, this marks the final release for PostgreSQL 10, meaning that it will no longer receive any security patches or bug fixes going forward. Therefore, if you are currently utilizing PostgreSQL 10 in your production environment, it is highly recommended that you plan to upgrade to a more recent version to ensure continued support and security. Upgrading will not only help maintain the integrity of your data but also allow you to take advantage of the latest features and improvements introduced in newer releases. -
29
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
30
Debezium
Debezium
Debezium is a powerful open-source platform designed for capturing changes in data across distributed systems. By initiating the service and directing it towards your databases, your applications can seamlessly respond to every insert, update, and deletion made by other applications interacting with your databases. Known for its speed and reliability, Debezium ensures that your applications can quickly react to changes and remain resilient even in the face of failures. Since data is in a constant state of flux, Debezium empowers your applications to react to these alterations without requiring modifications to the applications responsible for the data changes. It continuously observes your databases, enabling your applications to stream every change at the row level in the exact order they were committed. This technology can be leveraged to refresh caches, update search indices, create derived views and datasets, synchronize other data sources, and much more. Moreover, you can extract this functionality from your core applications and build dedicated services to handle these tasks efficiently. Embracing Debezium allows for enhanced data management and improved application performance. -
31
Apache Pinot
Apache Corporation
Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues. -
32
DuckDB
DuckDB
Handling and storing tabular data, such as that found in CSV or Parquet formats, is essential for data management. Transferring large result sets to clients is a common requirement, especially in extensive client/server frameworks designed for centralized enterprise data warehousing. Additionally, writing to a single database from various simultaneous processes poses its own set of challenges. DuckDB serves as a relational database management system (RDBMS), which is a specialized system for overseeing data organized into relations. In this context, a relation refers to a table, characterized by a named collection of rows. Each row within a table maintains a consistent structure of named columns, with each column designated to hold a specific data type. Furthermore, tables are organized within schemas, and a complete database comprises a collection of these schemas, providing structured access to the stored data. This organization not only enhances data integrity but also facilitates efficient querying and reporting across diverse datasets. -
33
MotherDuck
MotherDuck
We are MotherDuck, a dynamic software company created by a dedicated group of seasoned data enthusiasts. Our team has held leadership roles in some of the most prestigious data organizations. Instead of focusing on costly and sluggish scale-out solutions, we propose a scale-up approach. The era of Big Data is behind us; it’s time for the era of easy data to take the lead. Your laptop outperforms your data warehouse, so why should you have to wait for the cloud? DuckDB has proven its worth, so let’s enhance its capabilities. When we established MotherDuck, we saw DuckDB as a potential revolutionary tool due to its user-friendliness, portability, incredible speed, and the swift evolution driven by its community. At MotherDuck, our mission is to support the community, the DuckDB Foundation, and DuckDB Labs in enhancing the recognition and adoption of DuckDB, catering to users who prefer local work or desire a serverless, always-on SQL execution method. Our exceptional team comprises engineers and leaders with extensive backgrounds in databases and cloud technologies from industry giants such as AWS, Databricks, Elastic, Facebook, Firebolt, Google BigQuery, Neo4j, SingleStore, and many others. We believe that with the right tools and community, the future of data management can be redefined for everyone. -
34
Soda
Soda
Soda helps you manage your data operations by identifying issues and alerting the right people. No data, or people, are ever left behind with automated and self-serve monitoring capabilities. You can quickly get ahead of data issues by providing full observability across all your data workloads. Data teams can discover data issues that automation won't. Self-service capabilities provide the wide coverage data monitoring requires. Alert the right people at just the right time to help business teams diagnose, prioritize, fix, and resolve data problems. Your data will never leave your private cloud with Soda. Soda monitors your data at source and stores only metadata in your cloud. -
35
Apache Pulsar
Apache Software Foundation
Apache Pulsar is a cutting-edge, distributed platform for messaging and streaming that was initially developed at Yahoo! and has since become a prominent project under the Apache Software Foundation. It boasts straightforward deployment, a lightweight computing process, and APIs that are user-friendly, eliminating the necessity of managing your own stream processing engine. For over five years, it has been utilized in Yahoo!'s production environment, handling millions of messages each second across a vast array of topics. Designed from the outset to function as a multi-tenant system, it offers features like isolation, authentication, authorization, and quotas to ensure secure operations. Additionally, Pulsar provides configurable data replication across various geographic regions, ensuring data resilience. Its message storage relies on Apache BookKeeper, facilitating robust performance, while maintaining IO-level separation between read and write operations. Furthermore, a RESTful admin API is available for effective provisioning, administration, and monitoring tasks, enhancing operational efficiency. This combination of features makes Apache Pulsar an invaluable tool for organizations seeking scalable and reliable messaging solutions. -
36
Singer
Singer
Singer outlines the interaction between data extraction scripts, known as "taps," and data loading scripts referred to as "targets," facilitating their use in various combinations for transferring data from multiple sources to diverse destinations. This enables seamless data movement across databases, web APIs, files, queues, and virtually any other medium imaginable. The simplicity of Singer taps and targets is evident as they are designed as straightforward applications that utilize pipes—eliminating the need for complex daemons or plugins. Communication between Singer applications occurs through JSON, which enhances compatibility and ease of implementation across different programming languages. Additionally, Singer incorporates JSON Schema to ensure robust data types and structured organization when necessary. Another advantage of Singer is its ability to easily maintain state during consecutive runs, thereby enabling efficient incremental data extraction. This makes Singer not only versatile but also a powerful tool in the realm of data integration.
- Previous
- You're on page 1
- Next