LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Med-PaLM 2
Innovations in healthcare have the potential to transform lives and inspire hope, driven by a combination of scientific expertise, empathy, and human understanding. We are confident that artificial intelligence can play a significant role in this transformation through effective collaboration among researchers, healthcare providers, and the wider community. Today, we are thrilled to announce promising strides in these efforts, unveiling limited access to Google’s medical-focused large language model, Med-PaLM 2. In the upcoming weeks, this model will be made available for restricted testing to a select group of Google Cloud clients, allowing them to explore its applications and provide valuable feedback as we pursue safe and responsible methods of leveraging this technology. Med-PaLM 2 utilizes Google’s advanced LLMs, specifically tailored for the medical field, to enhance the accuracy and safety of responses to medical inquiries. Notably, Med-PaLM 2 achieved the distinction of being the first LLM to perform at an “expert” level on the MedQA dataset, which consists of questions modeled after the US Medical Licensing Examination (USMLE). This milestone reflects our commitment to advancing healthcare through innovative solutions and highlights the potential of AI in addressing complex medical challenges.
Learn more
ESMFold
ESMFold demonstrates how artificial intelligence can equip us with innovative instruments to explore the natural world, akin to the way the microscope revolutionized our perception by allowing us to observe the minute details of life. Through AI, we can gain a fresh perspective on the vast array of biological diversity, enhancing our comprehension of life sciences. A significant portion of AI research has been dedicated to enabling machines to interpret the world in a manner reminiscent of human understanding. However, the complex language of proteins remains largely inaccessible to humans and has proven challenging for even the most advanced computational systems. Nevertheless, AI holds the promise of unlocking this intricate language, facilitating our grasp of biological processes. Exploring AI within the realm of biology not only enriches our understanding of life sciences but also sheds light on the broader implications of artificial intelligence itself. Our research highlights the interconnectedness of various fields: the large language models powering advancements in machine translation, natural language processing, speech recognition, and image synthesis also possess the capability to assimilate profound insights about biological systems. This cross-disciplinary approach could pave the way for unprecedented discoveries in both AI and biology.
Learn more