Best Gemma Alternatives in 2025
Find the top alternatives to Gemma currently available. Compare ratings, reviews, pricing, and features of Gemma alternatives in 2025. Slashdot lists the best Gemma alternatives on the market that offer competing products that are similar to Gemma. Sort through Gemma alternatives below to make the best choice for your needs
-
1
Google AI Studio
Google
9 RatingsGoogle AI Studio is a user-friendly, web-based workspace that offers a streamlined environment for exploring and applying cutting-edge AI technology. It acts as a powerful launchpad for diving into the latest developments in AI, making complex processes more accessible to developers of all levels. The platform provides seamless access to Google's advanced Gemini AI models, creating an ideal space for collaboration and experimentation in building next-gen applications. With tools designed for efficient prompt crafting and model interaction, developers can quickly iterate and incorporate complex AI capabilities into their projects. The flexibility of the platform allows developers to explore a wide range of use cases and AI solutions without being constrained by technical limitations. Google AI Studio goes beyond basic testing by enabling a deeper understanding of model behavior, allowing users to fine-tune and enhance AI performance. This comprehensive platform unlocks the full potential of AI, facilitating innovation and improving efficiency in various fields by lowering the barriers to AI development. By removing complexities, it helps users focus on building impactful solutions faster. -
2
Gemini Flash
Google
1 RatingGemini Flash represents a cutting-edge large language model developed by Google, specifically engineered for rapid, efficient language processing activities. As a part of the Gemini lineup from Google DeepMind, it is designed to deliver instantaneous responses and effectively manage extensive applications, proving to be exceptionally suited for dynamic AI-driven interactions like customer service, virtual assistants, and real-time chat systems. In addition to its impressive speed, Gemini Flash maintains a high standard of quality; it utilizes advanced neural architectures that guarantee responses are contextually appropriate, coherent, and accurate. Google has also integrated stringent ethical guidelines and responsible AI methodologies into Gemini Flash, providing it with safeguards to address and reduce biased outputs, thereby ensuring compliance with Google’s principles for secure and inclusive AI. With the capabilities of Gemini Flash, businesses and developers are empowered to implement agile, intelligent language solutions that can satisfy the requirements of rapidly evolving environments. This innovative model marks a significant step forward in the quest for sophisticated AI technologies that respect ethical considerations while enhancing user experience. -
3
Phi-3
Microsoft
Introducing a remarkable family of compact language models (SLMs) that deliver exceptional performance while being cost-effective and low in latency. These models are designed to enhance AI functionalities, decrease resource consumption, and promote budget-friendly generative AI applications across various platforms. They improve response times in real-time interactions, navigate autonomous systems, and support applications that demand low latency, all critical to user experience. Phi-3 can be deployed in cloud environments, edge computing, or directly on devices, offering unparalleled flexibility for deployment and operations. Developed in alignment with Microsoft AI principles—such as accountability, transparency, fairness, reliability, safety, privacy, security, and inclusiveness—these models ensure ethical AI usage. They also excel in offline environments where data privacy is essential or where internet connectivity is sparse. With an expanded context window, Phi-3 generates outputs that are more coherent, accurate, and contextually relevant, making it an ideal choice for various applications. Ultimately, deploying at the edge not only enhances speed but also ensures that users receive timely and effective responses. -
4
Gemma 2
Google
The Gemma family consists of advanced, lightweight models developed using the same innovative research and technology as the Gemini models. These cutting-edge models are equipped with robust security features that promote responsible and trustworthy AI applications, achieved through carefully curated data sets and thorough refinements. Notably, Gemma models excel in their various sizes—2B, 7B, 9B, and 27B—often exceeding the performance of some larger open models. With the introduction of Keras 3.0, users can experience effortless integration with JAX, TensorFlow, and PyTorch, providing flexibility in framework selection based on specific tasks. Designed for peak performance and remarkable efficiency, Gemma 2 is specifically optimized for rapid inference across a range of hardware platforms. Furthermore, the Gemma family includes diverse models that cater to distinct use cases, ensuring they adapt effectively to user requirements. These lightweight language models feature a decoder and have been trained on an extensive array of textual data, programming code, and mathematical concepts, which enhances their versatility and utility in various applications. -
5
Gemini Nano
Google
1 RatingGoogle's Gemini Nano is an efficient and lightweight AI model engineered to perform exceptionally well in environments with limited resources. Specifically designed for mobile applications and edge computing, it merges Google's sophisticated AI framework with innovative optimization strategies, ensuring high-speed performance and accuracy are preserved. This compact model stands out in various applications, including voice recognition, real-time translation, natural language processing, and delivering personalized recommendations. Emphasizing both privacy and efficiency, Gemini Nano processes information locally to reduce dependence on cloud services while ensuring strong security measures are in place. Its versatility and minimal power requirements make it perfectly suited for smart devices, IoT applications, and portable AI technologies. As a result, it opens up new possibilities for developers looking to integrate advanced AI into everyday gadgets. -
6
Falcon 2
Technology Innovation Institute (TII)
FreeFalcon 2 11B is a versatile AI model that is open-source, supports multiple languages, and incorporates multimodal features, particularly excelling in vision-to-language tasks. It outperforms Meta’s Llama 3 8B and matches the capabilities of Google’s Gemma 7B, as validated by the Hugging Face Leaderboard. In the future, the development plan includes adopting a 'Mixture of Experts' strategy aimed at significantly improving the model's functionalities, thereby advancing the frontiers of AI technology even further. This evolution promises to deliver remarkable innovations, solidifying Falcon 2's position in the competitive landscape of artificial intelligence. -
7
Gemma 3
Google
FreeGemma 3, launched by Google, represents a cutting-edge AI model constructed upon the Gemini 2.0 framework, aimed at delivering superior efficiency and adaptability. This innovative model can operate seamlessly on a single GPU or TPU, which opens up opportunities for a diverse group of developers and researchers. Focusing on enhancing natural language comprehension, generation, and other AI-related functions, Gemma 3 is designed to elevate the capabilities of AI systems. With its scalable and robust features, Gemma 3 aspires to propel the evolution of AI applications in numerous sectors and scenarios, potentially transforming the landscape of technology as we know it. -
8
Pixtral Large
Mistral AI
FreePixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations. -
9
DataGemma
Google
DataGemma signifies a groundbreaking initiative by Google aimed at improving the precision and dependability of large language models when handling statistical information. Released as a collection of open models, DataGemma utilizes Google's Data Commons, a comprehensive source of publicly available statistical information, to root its outputs in actual data. This project introduces two cutting-edge methods: Retrieval Interleaved Generation (RIG) and Retrieval Augmented Generation (RAG). The RIG approach incorporates real-time data verification during the content generation phase to maintain factual integrity, while RAG focuses on acquiring pertinent information ahead of producing responses, thereby minimizing the risk of inaccuracies often referred to as AI hallucinations. Through these strategies, DataGemma aspires to offer users more reliable and factually accurate answers, representing a notable advancement in the effort to combat misinformation in AI-driven content. Ultimately, this initiative not only underscores Google's commitment to responsible AI but also enhances the overall user experience by fostering trust in the information provided. -
10
CodeGemma
Google
CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere. -
11
Gemini 2.0 Pro
Google
Gemini 2.0 Pro stands as the pinnacle of Google DeepMind's AI advancements, engineered to master intricate tasks like programming and complex problem resolution. As it undergoes experimental testing, this model boasts an impressive context window of two million tokens, allowing for the efficient processing and analysis of extensive data sets. One of its most remarkable attributes is its ability to integrate effortlessly with external tools such as Google Search and code execution platforms, which significantly boosts its capacity to deliver precise and thorough answers. This innovative model signifies a major leap forward in artificial intelligence, equipping both developers and users with a formidable tool for addressing demanding challenges. Furthermore, its potential applications span various industries, making it a versatile asset in the evolving landscape of AI technology. -
12
Mistral Small 3.1
Mistral
FreeMistral Small 3.1 represents a cutting-edge, multimodal, and multilingual AI model that has been released under the Apache 2.0 license. This upgraded version builds on Mistral Small 3, featuring enhanced text capabilities and superior multimodal comprehension, while also accommodating an extended context window of up to 128,000 tokens. It demonstrates superior performance compared to similar models such as Gemma 3 and GPT-4o Mini, achieving impressive inference speeds of 150 tokens per second. Tailored for adaptability, Mistral Small 3.1 shines in a variety of applications, including instruction following, conversational support, image analysis, and function execution, making it ideal for both business and consumer AI needs. The model's streamlined architecture enables it to operate efficiently on hardware such as a single RTX 4090 or a Mac equipped with 32GB of RAM, thus supporting on-device implementations. Users can download it from Hugging Face and access it through Mistral AI's developer playground, while it is also integrated into platforms like Google Cloud Vertex AI, with additional accessibility on NVIDIA NIM and more. This flexibility ensures that developers can leverage its capabilities across diverse environments and applications. -
13
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
14
Gemini 2.0 Flash Thinking
Google
Gemini 2.0 Flash Thinking is an innovative artificial intelligence model created by Google DeepMind, aimed at improving reasoning abilities through the clear articulation of its thought processes. This openness enables the model to address intricate challenges more efficiently while offering users straightforward insights into its decision-making journey. By revealing its internal reasoning, Gemini 2.0 Flash Thinking not only boosts performance but also enhances explainability, rendering it an essential resource for applications that necessitate a profound comprehension and confidence in AI-driven solutions. Furthermore, this approach fosters a deeper relationship between users and the technology, as it demystifies the workings of AI. -
15
Gemma 3n
Google DeepMind
Introducing Gemma 3n, our cutting-edge open multimodal model designed specifically for optimal on-device performance and efficiency. With a focus on responsive and low-footprint local inference, Gemma 3n paves the way for a new generation of intelligent applications that can be utilized on the move. It has the capability to analyze and respond to a blend of images and text, with plans to incorporate video and audio functionalities in the near future. Developers can create smart, interactive features that prioritize user privacy and function seamlessly without an internet connection. The model boasts a mobile-first architecture, significantly minimizing memory usage. Co-developed by Google's mobile hardware teams alongside industry experts, it maintains a 4B active memory footprint while also offering the flexibility to create submodels for optimizing quality and latency. Notably, Gemma 3n represents our inaugural open model built on this revolutionary shared architecture, enabling developers to start experimenting with this advanced technology today in its early preview. As technology evolves, we anticipate even more innovative applications to emerge from this robust framework. -
16
Gemini 2.0
Google
Free 1 RatingGemini 2.0 represents a cutting-edge AI model created by Google, aimed at delivering revolutionary advancements in natural language comprehension, reasoning abilities, and multimodal communication. This new version builds upon the achievements of its earlier model by combining extensive language processing with superior problem-solving and decision-making skills, allowing it to interpret and produce human-like responses with enhanced precision and subtlety. In contrast to conventional AI systems, Gemini 2.0 is designed to simultaneously manage diverse data formats, such as text, images, and code, rendering it an adaptable asset for sectors like research, business, education, and the arts. Key enhancements in this model include improved contextual awareness, minimized bias, and a streamlined architecture that guarantees quicker and more consistent results. As a significant leap forward in the AI landscape, Gemini 2.0 is set to redefine the nature of human-computer interactions, paving the way for even more sophisticated applications in the future. Its innovative features not only enhance user experience but also facilitate more complex and dynamic engagements across various fields. -
17
Gemini 2.0 Flash-Lite
Google
Gemini 2.0 Flash-Lite represents the newest AI model from Google DeepMind, engineered to deliver an affordable alternative while maintaining high performance standards. As the most budget-friendly option within the Gemini 2.0 range, Flash-Lite is specifically designed for developers and enterprises in search of efficient AI functions without breaking the bank. This model accommodates multimodal inputs and boasts an impressive context window of one million tokens, which enhances its versatility for numerous applications. Currently, Flash-Lite is accessible in public preview, inviting users to investigate its capabilities for elevating their AI-focused initiatives. This initiative not only showcases innovative technology but also encourages feedback to refine its features further. -
18
DBRX
Databricks
We are thrilled to present DBRX, a versatile open LLM developed by Databricks. This innovative model achieves unprecedented performance on a variety of standard benchmarks, setting a new benchmark for existing open LLMs. Additionally, it equips both the open-source community and enterprises crafting their own LLMs with features that were once exclusive to proprietary model APIs; our evaluations indicate that it outperforms GPT-3.5 and competes effectively with Gemini 1.0 Pro. Notably, it excels as a code model, outperforming specialized counterparts like CodeLLaMA-70B in programming tasks, while also demonstrating its prowess as a general-purpose LLM. The remarkable quality of DBRX is complemented by significant enhancements in both training and inference efficiency. Thanks to its advanced fine-grained mixture-of-experts (MoE) architecture, DBRX elevates the efficiency of open models to new heights. In terms of inference speed, it can be twice as fast as LLaMA2-70B, and its total and active parameter counts are approximately 40% of those in Grok-1, showcasing its compact design without compromising capability. This combination of speed and size makes DBRX a game-changer in the landscape of open AI models. -
19
Gemini 2.0 Flash
Google
1 RatingThe Gemini 2.0 Flash AI model signifies a revolutionary leap in high-speed, intelligent computing, aiming to redefine standards in real-time language processing and decision-making capabilities. By enhancing the strong foundation laid by its predecessor, it features advanced neural architecture and significant optimization breakthroughs that facilitate quicker and more precise responses. Tailored for applications that demand immediate processing and flexibility, such as live virtual assistants, automated trading systems, and real-time analytics, Gemini 2.0 Flash excels in various contexts. Its streamlined and efficient design allows for effortless deployment across cloud, edge, and hybrid environments, making it adaptable to diverse technological landscapes. Furthermore, its superior contextual understanding and multitasking abilities equip it to manage complex and dynamic workflows with both accuracy and speed, solidifying its position as a powerful asset in the realm of artificial intelligence. With each iteration, technology continues to advance, and models like Gemini 2.0 Flash pave the way for future innovations in the field. -
20
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
21
GPT-J
EleutherAI
FreeGPT-J represents an advanced language model developed by EleutherAI, known for its impressive capabilities. When it comes to performance, GPT-J showcases a proficiency that rivals OpenAI's well-known GPT-3 in various zero-shot tasks. Remarkably, it has even outperformed GPT-3 in specific areas, such as code generation. The most recent version of this model, called GPT-J-6B, is constructed using a comprehensive linguistic dataset known as The Pile, which is publicly accessible and consists of an extensive 825 gibibytes of language data divided into 22 unique subsets. Although GPT-J possesses similarities to ChatGPT, it's crucial to highlight that it is primarily intended for text prediction rather than functioning as a chatbot. In a notable advancement in March 2023, Databricks unveiled Dolly, a model that is capable of following instructions and operates under an Apache license, further enriching the landscape of language models. This evolution in AI technology continues to push the boundaries of what is possible in natural language processing. -
22
Gemini 2.5 Flash-Lite
Google
Gemini 2.5, developed by Google DeepMind, represents a breakthrough in AI with enhanced reasoning capabilities and native multimodality, allowing it to process long context windows of up to one million tokens. The family includes three variants: Pro for complex coding tasks, Flash for fast general use, and Flash-Lite for high-volume, cost-efficient workflows. Gemini 2.5 models improve accuracy by thinking through diverse strategies and provide developers with adaptive controls to optimize performance and resource use. The models handle multiple input types—text, images, video, audio, and PDFs—and offer powerful tool use like search and code execution. Gemini 2.5 achieves state-of-the-art results across coding, math, science, reasoning, and multilingual benchmarks, outperforming its predecessors. It is accessible through Google AI Studio, Gemini API, and Vertex AI platforms. Google emphasizes responsible AI development, prioritizing safety and security in all applications. Gemini 2.5 enables developers to build advanced interactive simulations, automated coding, and other innovative AI-driven solutions. -
23
LLaVA
LLaVA
FreeLLaVA, or Large Language-and-Vision Assistant, represents a groundbreaking multimodal model that combines a vision encoder with the Vicuna language model, enabling enhanced understanding of both visual and textual information. By employing end-to-end training, LLaVA showcases remarkable conversational abilities, mirroring the multimodal features found in models such as GPT-4. Significantly, LLaVA-1.5 has reached cutting-edge performance on 11 different benchmarks, leveraging publicly accessible data and achieving completion of its training in about one day on a single 8-A100 node, outperforming approaches that depend on massive datasets. The model's development included the construction of a multimodal instruction-following dataset, which was produced using a language-only variant of GPT-4. This dataset consists of 158,000 distinct language-image instruction-following examples, featuring dialogues, intricate descriptions, and advanced reasoning challenges. Such a comprehensive dataset has played a crucial role in equipping LLaVA to handle a diverse range of tasks related to vision and language with great efficiency. In essence, LLaVA not only enhances the interaction between visual and textual modalities but also sets a new benchmark in the field of multimodal AI. -
24
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
25
OLMo 2
Ai2
OLMo 2 represents a collection of completely open language models created by the Allen Institute for AI (AI2), aimed at giving researchers and developers clear access to training datasets, open-source code, reproducible training methodologies, and thorough assessments. These models are trained on an impressive volume of up to 5 trillion tokens and compete effectively with top open-weight models like Llama 3.1, particularly in English academic evaluations. A key focus of OLMo 2 is on ensuring training stability, employing strategies to mitigate loss spikes during extended training periods, and applying staged training interventions in the later stages of pretraining to mitigate weaknesses in capabilities. Additionally, the models leverage cutting-edge post-training techniques derived from AI2's Tülu 3, leading to the development of OLMo 2-Instruct models. To facilitate ongoing enhancements throughout the development process, an actionable evaluation framework known as the Open Language Modeling Evaluation System (OLMES) was created, which includes 20 benchmarks that evaluate essential capabilities. This comprehensive approach not only fosters transparency but also encourages continuous improvement in language model performance. -
26
OpenAI o3
OpenAI
$2 per 1 million tokensOpenAI o3 is a cutting-edge AI model that aims to improve reasoning abilities by simplifying complex tasks into smaller, more digestible components. It shows remarkable advancements compared to earlier AI versions, particularly in areas such as coding, competitive programming, and achieving top results in math and science assessments. Accessible for general use, OpenAI o3 facilitates advanced AI-enhanced problem-solving and decision-making processes. The model employs deliberative alignment strategies to guarantee that its outputs adhere to recognized safety and ethical standards, positioning it as an invaluable resource for developers, researchers, and businesses in pursuit of innovative AI solutions. With its robust capabilities, OpenAI o3 is set to redefine the boundaries of artificial intelligence applications across various fields. -
27
OPT
Meta
Large language models, often requiring extensive computational resources for training over long periods, have demonstrated impressive proficiency in zero- and few-shot learning tasks. Due to the high investment needed for their development, replicating these models poses a significant challenge for many researchers. Furthermore, access to the few models available via API is limited, as users cannot obtain the complete model weights, complicating academic exploration. In response to this, we introduce Open Pre-trained Transformers (OPT), a collection of decoder-only pre-trained transformers ranging from 125 million to 175 billion parameters, which we intend to share comprehensively and responsibly with interested scholars. Our findings indicate that OPT-175B exhibits performance on par with GPT-3, yet it is developed with only one-seventh of the carbon emissions required for GPT-3's training. Additionally, we will provide a detailed logbook that outlines the infrastructure hurdles we encountered throughout the project, as well as code to facilitate experimentation with all released models, ensuring that researchers have the tools they need to explore this technology further. -
28
DeepSeek V3.1
DeepSeek
FreeDeepSeek V3.1 stands as a revolutionary open-weight large language model, boasting an impressive 685-billion parameters and an expansive 128,000-token context window, which allows it to analyze extensive documents akin to 400-page books in a single invocation. This model offers integrated functionalities for chatting, reasoning, and code creation, all within a cohesive hybrid architecture that harmonizes these diverse capabilities. Furthermore, V3.1 accommodates multiple tensor formats, granting developers the versatility to enhance performance across various hardware setups. Preliminary benchmark evaluations reveal strong results, including a remarkable 71.6% on the Aider coding benchmark, positioning it competitively with or even superior to systems such as Claude Opus 4, while achieving this at a significantly reduced cost. Released under an open-source license on Hugging Face with little publicity, DeepSeek V3.1 is set to revolutionize access to advanced AI technologies, potentially disrupting the landscape dominated by conventional proprietary models. Its innovative features and cost-effectiveness may attract a wide range of developers eager to leverage cutting-edge AI in their projects. -
29
Smaug-72B
Abacus
FreeSmaug-72B is a formidable open-source large language model (LLM) distinguished by several prominent features: Exceptional Performance: It currently ranks first on the Hugging Face Open LLM leaderboard, outperforming models such as GPT-3.5 in multiple evaluations, demonstrating its ability to comprehend, react to, and generate text that closely resembles human writing. Open Source Availability: In contrast to many high-end LLMs, Smaug-72B is accessible to everyone for use and modification, which encourages cooperation and innovation within the AI ecosystem. Emphasis on Reasoning and Mathematics: This model excels particularly in reasoning and mathematical challenges, a capability attributed to specialized fine-tuning methods developed by its creators, Abacus AI. Derived from Qwen-72B: It is essentially a refined version of another robust LLM, Qwen-72B, which was launched by Alibaba, thereby enhancing its overall performance. In summary, Smaug-72B marks a notable advancement in the realm of open-source artificial intelligence, making it a valuable resource for developers and researchers alike. Its unique strengths not only elevate its status but also contribute to the ongoing evolution of AI technology. -
30
Gemini 2.5 Pro Preview (I/O Edition)
Google
$19.99/month Gemini 2.5 Pro Preview (I/O Edition) offers cutting-edge AI tools for developers, designed to simplify coding and improve web app creation. This version of the Gemini AI model excels in code editing, transformation, and error reduction, making it an invaluable asset for developers. Its advanced performance in video understanding and web development tasks ensures that you can create both beautiful and functional web apps. Available via Google’s AI platforms, Gemini 2.5 Pro Preview helps you streamline your workflow with smarter, faster coding and reduced errors for a more efficient development process. -
31
OpenAI o3-mini
OpenAI
The o3-mini by OpenAI is a streamlined iteration of the sophisticated o3 AI model, delivering robust reasoning skills in a more compact and user-friendly format. It specializes in simplifying intricate instructions into digestible steps, making it particularly adept at coding, competitive programming, and tackling mathematical and scientific challenges. This smaller model maintains the same level of accuracy and logical reasoning as the larger version, while operating with lower computational demands, which is particularly advantageous in environments with limited resources. Furthermore, o3-mini incorporates inherent deliberative alignment, promoting safe, ethical, and context-sensitive decision-making. Its versatility makes it an invaluable resource for developers, researchers, and enterprises striving for an optimal mix of performance and efficiency in their projects. The combination of these features positions o3-mini as a significant tool in the evolving landscape of AI-driven solutions. -
32
Gemini, an innovative AI chatbot from Google, aims to boost creativity and productivity through engaging conversations in natural language. Available on both web and mobile platforms, it works harmoniously with multiple Google services like Docs, Drive, and Gmail, allowing users to create content, condense information, and handle tasks effectively. With its multimodal abilities, Gemini can analyze and produce various forms of data, including text, images, and audio, which enables it to deliver thorough support in numerous scenarios. As it continually learns from user engagement, Gemini customizes its responses to provide personalized and context-sensitive assistance, catering to diverse user requirements. Moreover, this adaptability ensures that it evolves alongside its users, making it a valuable tool for anyone looking to enhance their workflow and creativity.
-
33
Gemini 2.5 Pro represents a cutting-edge AI model tailored for tackling intricate tasks, showcasing superior reasoning and coding skills. It stands out in various benchmarks, particularly in mathematics, science, and programming, where it demonstrates remarkable efficacy in activities such as web application development and code conversion. Building on the Gemini 2.5 framework, this model boasts a context window of 1 million tokens, allowing it to efficiently manage extensive datasets from diverse origins, including text, images, and code libraries. Now accessible through Google AI Studio, Gemini 2.5 Pro is fine-tuned for more advanced applications, catering to expert users with enhanced capabilities for solving complex challenges. Furthermore, its design reflects a commitment to pushing the boundaries of AI's potential in real-world scenarios.
-
34
Llama 4 Maverick
Meta
FreeLlama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands. -
35
Gemini 3.0 Pro
Google
$19.99/month Gemini 3.0 is Google’s highly anticipated AI model slated for release in late 2025, designed to elevate AI performance by integrating sophisticated reasoning, multimodal understanding, and autonomous agent capabilities. It can process over a million tokens at once, enabling it to analyze entire books, videos, and complex datasets seamlessly. Equipped with chain-of-thought reasoning, Gemini 3.0 doesn’t just generate answers but plans and refines them for better accuracy. The model runs on cutting-edge TPU v5p hardware, delivering real-time, lightning-fast responses while maintaining high safety standards. Until its release, Fello AI offers Mac users access to leading AI models such as GPT-4o, Claude 4, and Gemini 2.5 Pro in a single, well-designed application. Fello AI supports native Mac features like drag-and-drop file analysis and offline chat history, optimized for Apple Silicon and Intel processors. This app allows users to experiment with multiple AI engines and prepare their workflows ahead of Gemini 3.0’s launch. Early users praise Fello AI for its reliability and ease of use in brainstorming, writing, coding, and analysis tasks. -
36
Phi-2
Microsoft
We are excited to announce the launch of Phi-2, a language model featuring 2.7 billion parameters that excels in reasoning and language comprehension, achieving top-tier results compared to other base models with fewer than 13 billion parameters. In challenging benchmarks, Phi-2 competes with and often surpasses models that are up to 25 times its size, a feat made possible by advancements in model scaling and meticulous curation of training data. Due to its efficient design, Phi-2 serves as an excellent resource for researchers interested in areas such as mechanistic interpretability, enhancing safety measures, or conducting fine-tuning experiments across a broad spectrum of tasks. To promote further exploration and innovation in language modeling, Phi-2 has been integrated into the Azure AI Studio model catalog, encouraging collaboration and development within the research community. Researchers can leverage this model to unlock new insights and push the boundaries of language technology. -
37
Falcon Mamba 7B
Technology Innovation Institute (TII)
FreeFalcon Mamba 7B marks a significant milestone as the inaugural open-source State Space Language Model (SSLM), presenting a revolutionary architecture within the Falcon model family. Celebrated as the premier open-source SSLM globally by Hugging Face, it establishes a new standard for efficiency in artificial intelligence. In contrast to conventional transformers, SSLMs require significantly less memory and can produce lengthy text sequences seamlessly without extra resource demands. Falcon Mamba 7B outperforms top transformer models, such as Meta’s Llama 3.1 8B and Mistral’s 7B, demonstrating enhanced capabilities. This breakthrough not only highlights Abu Dhabi’s dedication to pushing the boundaries of AI research but also positions the region as a pivotal player in the global AI landscape. Such advancements are vital for fostering innovation and collaboration in technology. -
38
DeepSeek R1
DeepSeek
Free 1 RatingDeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains. -
39
PygmalionAI
PygmalionAI
FreePygmalionAI is a vibrant community focused on the development of open-source initiatives utilizing EleutherAI's GPT-J 6B and Meta's LLaMA models. Essentially, Pygmalion specializes in crafting AI tailored for engaging conversations and roleplaying. The actively maintained Pygmalion AI model currently features the 7B variant, derived from Meta AI's LLaMA model. Requiring a mere 18GB (or even less) of VRAM, Pygmalion demonstrates superior chat functionality compared to significantly larger language models, all while utilizing relatively limited resources. Our meticulously assembled dataset, rich in high-quality roleplaying content, guarantees that your AI companion will be the perfect partner for roleplaying scenarios. Both the model weights and the training code are entirely open-source, allowing you the freedom to modify and redistribute them for any purpose you desire. Generally, language models, such as Pygmalion, operate on GPUs, as they require swift memory access and substantial processing power to generate coherent text efficiently. As a result, users can expect a smooth and responsive interaction experience when employing Pygmalion's capabilities. -
40
PaLM 2
Google
PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation. -
41
OpenGPT-X
OpenGPT-X
FreeOpenGPT-X is an initiative based in Germany that is dedicated to creating large AI language models specifically designed to meet the needs of Europe, highlighting attributes such as adaptability, reliability, multilingual support, and open-source accessibility. This initiative unites various partners to encompass the full spectrum of the generative AI value chain, which includes scalable, GPU-powered infrastructure and data for training expansive language models, alongside model design and practical applications through prototypes and proofs of concept. The primary goal of OpenGPT-X is to promote innovative research with a significant emphasis on business applications, thus facilitating the quicker integration of generative AI within the German economic landscape. Additionally, the project places a strong importance on the ethical development of AI, ensuring that the models developed are both reliable and consistent with European values and regulations. Furthermore, OpenGPT-X offers valuable resources such as the LLM Workbook and a comprehensive three-part reference guide filled with examples and resources to aid users in grasping the essential features of large AI language models, ultimately fostering a deeper understanding of this technology. By providing these tools, OpenGPT-X not only supports the technical development of AI but also encourages responsible usage and implementation across various sectors. -
42
GPT-5 pro
OpenAI
OpenAI’s GPT-5 Pro represents the pinnacle of AI reasoning power, offering enhanced capabilities for solving the toughest problems with unparalleled precision and depth. This version leverages extensive parallel compute resources to deliver highly accurate, detailed answers that outperform prior models across challenging scientific, medical, mathematical, and programming benchmarks. GPT-5 Pro is particularly effective in handling multi-step, complex queries that require sustained focus and logical reasoning. Experts consistently rate its outputs as more comprehensive, relevant, and error-resistant than those from standard GPT-5. It seamlessly integrates with existing ChatGPT offerings, allowing Pro users to access this powerful reasoning mode for demanding tasks. The model’s ability to dynamically allocate “thinking” resources ensures efficient and expert-level responses. Additionally, GPT-5 Pro features improved safety, reduced hallucinations, and better transparency about its capabilities and limitations. It empowers professionals and researchers to push the boundaries of what AI can achieve. -
43
Stable LM
Stability AI
FreeStable LM represents a significant advancement in the field of language models by leveraging our previous experience with open-source initiatives, particularly in collaboration with EleutherAI, a nonprofit research organization. This journey includes the development of notable models such as GPT-J, GPT-NeoX, and the Pythia suite, all of which were trained on The Pile open-source dataset, while many contemporary open-source models like Cerebras-GPT and Dolly-2 have drawn inspiration from this foundational work. Unlike its predecessors, Stable LM is trained on an innovative dataset that is three times the size of The Pile, encompassing a staggering 1.5 trillion tokens. We plan to share more information about this dataset in the near future. The extensive nature of this dataset enables Stable LM to excel remarkably in both conversational and coding scenarios, despite its relatively modest size of 3 to 7 billion parameters when compared to larger models like GPT-3, which boasts 175 billion parameters. Designed for versatility, Stable LM 3B is a streamlined model that can efficiently function on portable devices such as laptops and handheld gadgets, making us enthusiastic about its practical applications and mobility. Overall, the development of Stable LM marks a pivotal step towards creating more efficient and accessible language models for a wider audience. -
44
Baichuan-13B
Baichuan Intelligent Technology
FreeBaichuan-13B is an advanced large-scale language model developed by Baichuan Intelligent, featuring 13 billion parameters and available for open-source and commercial use, building upon its predecessor Baichuan-7B. This model has set new records for performance among similarly sized models on esteemed Chinese and English evaluation metrics. The release includes two distinct pre-training variations: Baichuan-13B-Base and Baichuan-13B-Chat. By significantly increasing the parameter count to 13 billion, Baichuan-13B enhances its capabilities, training on 1.4 trillion tokens from a high-quality dataset, which surpasses LLaMA-13B's training data by 40%. It currently holds the distinction of being the model with the most extensive training data in the 13B category, providing robust support for both Chinese and English languages, utilizing ALiBi positional encoding, and accommodating a context window of 4096 tokens for improved comprehension and generation. This makes it a powerful tool for a variety of applications in natural language processing. -
45
Claude Opus 4.1
Anthropic
Claude Opus 4.1 represents a notable incremental enhancement over its predecessor, Claude Opus 4, designed to elevate coding, agentic reasoning, and data-analysis capabilities while maintaining the same level of deployment complexity. This version boosts coding accuracy to an impressive 74.5 percent on SWE-bench Verified and enhances the depth of research and detailed tracking for agentic search tasks. Furthermore, GitHub has reported significant advancements in multi-file code refactoring, and Rakuten Group emphasizes its ability to accurately identify precise corrections within extensive codebases without introducing any bugs. Independent benchmarks indicate that junior developer test performance has improved by approximately one standard deviation compared to Opus 4, reflecting substantial progress consistent with previous Claude releases. Users can access Opus 4.1 now, as it is available to paid subscribers of Claude, integrated into Claude Code, and can be accessed through the Anthropic API (model ID claude-opus-4-1-20250805), as well as via platforms like Amazon Bedrock and Google Cloud Vertex AI. Additionally, it integrates effortlessly into existing workflows, requiring no further setup beyond the selection of the updated model, thus enhancing the overall user experience and productivity.