LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
RaimaDB
RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times.
RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
Learn more
MedGemma
MedGemma is an innovative suite of Gemma 3 variants specifically designed to excel in the analysis of medical texts and images. This resource empowers developers to expedite the creation of AI applications focused on healthcare. Currently, MedGemma offers two distinct variants: a multimodal version with 4 billion parameters and a text-only version featuring 27 billion parameters. The 4B version employs a SigLIP image encoder, which has been meticulously pre-trained on a wealth of anonymized medical data, such as chest X-rays, dermatological images, ophthalmological images, and histopathological slides. Complementing this, its language model component is trained on a wide array of medical datasets, including radiological images and various pathology visuals. MedGemma 4B can be accessed in both pre-trained versions, denoted by the suffix -pt, and instruction-tuned versions, marked by the suffix -it. For most applications, the instruction-tuned variant serves as the optimal foundation to build upon, making it particularly valuable for developers. Overall, MedGemma represents a significant advancement in the integration of AI within the medical field.
Learn more
Gemma 3
Gemma 3, launched by Google, represents a cutting-edge AI model constructed upon the Gemini 2.0 framework, aimed at delivering superior efficiency and adaptability. This innovative model can operate seamlessly on a single GPU or TPU, which opens up opportunities for a diverse group of developers and researchers. Focusing on enhancing natural language comprehension, generation, and other AI-related functions, Gemma 3 is designed to elevate the capabilities of AI systems. With its scalable and robust features, Gemma 3 aspires to propel the evolution of AI applications in numerous sectors and scenarios, potentially transforming the landscape of technology as we know it.
Learn more