Best GMI Cloud Alternatives in 2025

Find the top alternatives to GMI Cloud currently available. Compare ratings, reviews, pricing, and features of GMI Cloud alternatives in 2025. Slashdot lists the best GMI Cloud alternatives on the market that offer competing products that are similar to GMI Cloud. Sort through GMI Cloud alternatives below to make the best choice for your needs

  • 1
    RunPod Reviews
    See Software
    Learn More
    Compare Both
    RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
  • 2
    Ori GPU Cloud Reviews
    Deploy GPU-accelerated instances that can be finely tuned to suit your AI requirements and financial plan. Secure access to thousands of GPUs within a cutting-edge AI data center, ideal for extensive training and inference operations. The trend in the AI landscape is clearly leaning towards GPU cloud solutions, allowing for the creation and deployment of innovative models while alleviating the challenges associated with infrastructure management and resource limitations. AI-focused cloud providers significantly surpass conventional hyperscalers in terms of availability, cost efficiency, and the ability to scale GPU usage for intricate AI tasks. Ori boasts a diverse array of GPU types, each designed to meet specific processing demands, which leads to a greater availability of high-performance GPUs compared to standard cloud services. This competitive edge enables Ori to deliver increasingly attractive pricing each year, whether for pay-as-you-go instances or dedicated servers. In comparison to the hourly or usage-based rates of traditional cloud providers, our GPU computing expenses are demonstrably lower for running extensive AI operations. Additionally, this cost-effectiveness makes Ori a compelling choice for businesses seeking to optimize their AI initiatives.
  • 3
    CoreWeave Reviews
    CoreWeave stands out as a cloud infrastructure service that focuses on GPU-centric computing solutions specifically designed for artificial intelligence applications. Their platform delivers scalable, high-performance GPU clusters that enhance both training and inference processes for AI models, catering to sectors such as machine learning, visual effects, and high-performance computing. In addition to robust GPU capabilities, CoreWeave offers adaptable storage, networking, and managed services that empower AI-focused enterprises, emphasizing reliability, cost-effectiveness, and top-tier security measures. This versatile platform is widely adopted by AI research facilities, labs, and commercial entities aiming to expedite their advancements in artificial intelligence technology. By providing an infrastructure that meets the specific demands of AI workloads, CoreWeave plays a crucial role in driving innovation across various industries.
  • 4
    Intel Tiber AI Cloud Reviews
    The Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies.
  • 5
    Baseten Reviews
    Baseten is a cloud-native platform focused on delivering robust and scalable AI inference solutions for businesses requiring high reliability. It enables deployment of custom, open-source, and fine-tuned AI models with optimized performance across any cloud or on-premises infrastructure. The platform boasts ultra-low latency, high throughput, and automatic autoscaling capabilities tailored to generative AI tasks like transcription, text-to-speech, and image generation. Baseten’s inference stack includes advanced caching, custom kernels, and decoding techniques to maximize efficiency. Developers benefit from a smooth experience with integrated tooling and seamless workflows, supported by hands-on engineering assistance from the Baseten team. The platform supports hybrid deployments, enabling overflow between private and Baseten clouds for maximum performance. Baseten also emphasizes security, compliance, and operational excellence with 99.99% uptime guarantees. This makes it ideal for enterprises aiming to deploy mission-critical AI products at scale.
  • 6
    Oblivus Reviews

    Oblivus

    Oblivus

    $0.29 per hour
    Our infrastructure is designed to fulfill all your computing needs, whether you require a single GPU or thousands, or just one vCPU to a vast array of tens of thousands of vCPUs; we have you fully covered. Our resources are always on standby to support your requirements, anytime you need them. With our platform, switching between GPU and CPU instances is incredibly simple. You can easily deploy, adjust, and scale your instances to fit your specific needs without any complications. Enjoy exceptional machine learning capabilities without overspending. We offer the most advanced technology at a much more affordable price. Our state-of-the-art GPUs are engineered to handle the demands of your workloads efficiently. Experience computational resources that are specifically designed to accommodate the complexities of your models. Utilize our infrastructure for large-scale inference and gain access to essential libraries through our OblivusAI OS. Furthermore, enhance your gaming experience by taking advantage of our powerful infrastructure, allowing you to play games in your preferred settings while optimizing performance. This flexibility ensures that you can adapt to changing requirements seamlessly.
  • 7
    Nscale Reviews
    Nscale is a specialized hyperscaler designed specifically for artificial intelligence, delivering high-performance computing that is fine-tuned for training, fine-tuning, and demanding workloads. Our vertically integrated approach in Europe spans from data centers to software solutions, ensuring unmatched performance, efficiency, and sustainability in all our offerings. Users can tap into thousands of customizable GPUs through our advanced AI cloud platform, enabling significant cost reductions and revenue growth while optimizing AI workload management. The platform is crafted to facilitate a smooth transition from development to production, whether employing Nscale's internal AI/ML tools or integrating your own. Users can also explore the Nscale Marketplace, which provides access to a wide array of AI/ML tools and resources that support effective and scalable model creation and deployment. Additionally, our serverless architecture allows for effortless and scalable AI inference, eliminating the hassle of infrastructure management. This system dynamically adjusts to demand, guaranteeing low latency and economical inference for leading generative AI models, ultimately enhancing user experience and operational efficiency. With Nscale, organizations can focus on innovation while we handle the complexities of AI infrastructure.
  • 8
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 9
    Nebius Reviews
    A robust platform optimized for training is equipped with NVIDIA® H100 Tensor Core GPUs, offering competitive pricing and personalized support. Designed to handle extensive machine learning workloads, it allows for efficient multihost training across thousands of H100 GPUs interconnected via the latest InfiniBand network, achieving speeds of up to 3.2Tb/s per host. Users benefit from significant cost savings, with at least a 50% reduction in GPU compute expenses compared to leading public cloud services*, and additional savings are available through GPU reservations and bulk purchases. To facilitate a smooth transition, we promise dedicated engineering support that guarantees effective platform integration while optimizing your infrastructure and deploying Kubernetes. Our fully managed Kubernetes service streamlines the deployment, scaling, and management of machine learning frameworks, enabling multi-node GPU training with ease. Additionally, our Marketplace features a variety of machine learning libraries, applications, frameworks, and tools designed to enhance your model training experience. New users can take advantage of a complimentary one-month trial period, ensuring they can explore the platform's capabilities effortlessly. This combination of performance and support makes it an ideal choice for organizations looking to elevate their machine learning initiatives.
  • 10
    Replicate Reviews
    Replicate is a comprehensive platform designed to help developers and businesses seamlessly run, fine-tune, and deploy machine learning models with just a few lines of code. It hosts thousands of community-contributed models that support diverse use cases such as image and video generation, speech synthesis, music creation, and text generation. Users can enhance model performance by fine-tuning models with their own datasets, enabling highly specialized AI applications. The platform supports custom model deployment through Cog, an open-source tool that automates packaging and deployment on cloud infrastructure while managing scaling transparently. Replicate’s pricing model is usage-based, ensuring customers pay only for the compute time they consume, with support for a variety of GPU and CPU options. The system provides built-in monitoring and logging capabilities to track model performance and troubleshoot predictions. Major companies like Buzzfeed, Unsplash, and Character.ai use Replicate to power their AI features. Replicate’s goal is to democratize access to scalable, production-ready machine learning infrastructure, making AI deployment accessible even to non-experts.
  • 11
    Together AI Reviews

    Together AI

    Together AI

    $0.0001 per 1k tokens
    Be it prompt engineering, fine-tuning, or extensive training, we are fully equipped to fulfill your business needs. Seamlessly incorporate your newly developed model into your application with the Together Inference API, which offers unparalleled speed and flexible scaling capabilities. Together AI is designed to adapt to your evolving requirements as your business expands. You can explore the training processes of various models and the datasets used to enhance their accuracy while reducing potential risks. It's important to note that the ownership of the fine-tuned model lies with you, not your cloud service provider, allowing for easy transitions if you decide to switch providers for any reason, such as cost adjustments. Furthermore, you can ensure complete data privacy by opting to store your data either locally or within our secure cloud environment. The flexibility and control we offer empower you to make decisions that best suit your business.
  • 12
    fal Reviews

    fal

    fal.ai

    $0.00111 per second
    Fal represents a serverless Python environment enabling effortless cloud scaling of your code without the need for infrastructure management. It allows developers to create real-time AI applications with incredibly fast inference times, typically around 120 milliseconds. Explore a variety of pre-built models that offer straightforward API endpoints, making it easy to launch your own AI-driven applications. You can also deploy custom model endpoints, allowing for precise control over factors such as idle timeout, maximum concurrency, and automatic scaling. Utilize widely-used models like Stable Diffusion and Background Removal through accessible APIs, all kept warm at no cost to you—meaning you won’t have to worry about the expense of cold starts. Engage in conversations about our product and contribute to the evolution of AI technology. The platform can automatically expand to utilize hundreds of GPUs and retract back to zero when not in use, ensuring you only pay for compute resources when your code is actively running. To get started with fal, simply import it into any Python project and wrap your existing functions with its convenient decorator, streamlining the development process for AI applications. This flexibility makes fal an excellent choice for both novice and experienced developers looking to harness the power of AI.
  • 13
    Qubrid AI Reviews

    Qubrid AI

    Qubrid AI

    $0.68/hour/GPU
    Qubrid AI stands out as a pioneering company in the realm of Artificial Intelligence (AI), dedicated to tackling intricate challenges across various sectors. Their comprehensive software suite features AI Hub, a centralized destination for AI models, along with AI Compute GPU Cloud and On-Prem Appliances, and the AI Data Connector. Users can develop both their own custom models and utilize industry-leading inference models, all facilitated through an intuitive and efficient interface. The platform allows for easy testing and refinement of models, followed by a smooth deployment process that enables users to harness the full potential of AI in their initiatives. With AI Hub, users can commence their AI journey, transitioning seamlessly from idea to execution on a robust platform. The cutting-edge AI Compute system maximizes efficiency by leveraging the capabilities of GPU Cloud and On-Prem Server Appliances, making it easier to innovate and execute next-generation AI solutions. The dedicated Qubrid team consists of AI developers, researchers, and partnered experts, all committed to continually enhancing this distinctive platform to propel advancements in scientific research and applications. Together, they aim to redefine the future of AI technology across multiple domains.
  • 14
    NetApp AIPod Reviews
    NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market.
  • 15
    WhiteFiber Reviews
    WhiteFiber operates as a comprehensive AI infrastructure platform that specializes in delivering high-performance GPU cloud services and HPC colocation solutions specifically designed for AI and machine learning applications. Their cloud services are meticulously engineered for tasks involving machine learning, expansive language models, and deep learning, equipped with advanced NVIDIA H200, B200, and GB200 GPUs alongside ultra-fast Ethernet and InfiniBand networking, achieving an impressive GPU fabric bandwidth of up to 3.2 Tb/s. Supporting a broad range of scaling capabilities from hundreds to tens of thousands of GPUs, WhiteFiber offers various deployment alternatives such as bare metal, containerized applications, and virtualized setups. The platform guarantees enterprise-level support and service level agreements (SLAs), incorporating unique cluster management, orchestration, and observability tools. Additionally, WhiteFiber’s data centers are strategically optimized for AI and HPC colocation, featuring high-density power, direct liquid cooling systems, and rapid deployment options, while also ensuring redundancy and scalability through cross-data center dark fiber connectivity. With a commitment to innovation and reliability, WhiteFiber stands out as a key player in the AI infrastructure ecosystem.
  • 16
    NVIDIA Run:ai Reviews
    NVIDIA Run:ai is a cutting-edge platform that streamlines AI workload orchestration and GPU resource management to accelerate AI development and deployment at scale. It dynamically pools GPU resources across hybrid clouds, private data centers, and public clouds to optimize compute efficiency and workload capacity. The solution offers unified AI infrastructure management with centralized control and policy-driven governance, enabling enterprises to maximize GPU utilization while reducing operational costs. Designed with an API-first architecture, Run:ai integrates seamlessly with popular AI frameworks and tools, providing flexible deployment options from on-premises to multi-cloud environments. Its open-source KAI Scheduler offers developers simple and flexible Kubernetes scheduling capabilities. Customers benefit from accelerated AI training and inference with reduced bottlenecks, leading to faster innovation cycles. Run:ai is trusted by organizations seeking to scale AI initiatives efficiently while maintaining full visibility and control. This platform empowers teams to transform resource management into a strategic advantage with zero manual effort.
  • 17
    NetMind AI Reviews
    NetMind.AI is an innovative decentralized computing platform and AI ecosystem aimed at enhancing global AI development. It capitalizes on the untapped GPU resources available around the globe, making AI computing power affordable and accessible for individuals, businesses, and organizations of varying scales. The platform offers diverse services like GPU rentals, serverless inference, and a comprehensive AI ecosystem that includes data processing, model training, inference, and agent development. Users can take advantage of competitively priced GPU rentals and effortlessly deploy their models using on-demand serverless inference, along with accessing a broad range of open-source AI model APIs that deliver high-throughput and low-latency performance. Additionally, NetMind.AI allows contributors to integrate their idle GPUs into the network, earning NetMind Tokens (NMT) as a form of reward. These tokens are essential for facilitating transactions within the platform, enabling users to pay for various services, including training, fine-tuning, inference, and GPU rentals. Ultimately, NetMind.AI aims to democratize access to AI resources, fostering a vibrant community of contributors and users alike.
  • 18
    TensorWave Reviews
    TensorWave is a cloud platform designed for AI and high-performance computing (HPC), exclusively utilizing AMD Instinct Series GPUs to ensure optimal performance. It features a high-bandwidth and memory-optimized infrastructure that seamlessly scales to accommodate even the most rigorous training or inference tasks. Users can access AMD’s leading GPUs in mere seconds, including advanced models like the MI300X and MI325X, renowned for their exceptional memory capacity and bandwidth, boasting up to 256GB of HBM3E and supporting speeds of 6.0TB/s. Additionally, TensorWave's architecture is equipped with UEC-ready functionalities that enhance the next generation of Ethernet for AI and HPC networking, as well as direct liquid cooling systems that significantly reduce total cost of ownership, achieving energy cost savings of up to 51% in data centers. The platform also incorporates high-speed network storage, which provides transformative performance, security, and scalability for AI workflows. Furthermore, it ensures seamless integration with a variety of tools and platforms, accommodating various models and libraries to enhance user experience. TensorWave stands out for its commitment to performance and efficiency in the evolving landscape of AI technology.
  • 19
    GPUonCLOUD Reviews
    In the past, tasks such as deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling could take several days or even weeks to complete. Thanks to GPUonCLOUD’s specialized GPU servers, these processes can now be accomplished in just a few hours. You can choose from a range of pre-configured systems or ready-to-use instances equipped with GPUs that support popular deep learning frameworks like TensorFlow, PyTorch, MXNet, and TensorRT, along with libraries such as the real-time computer vision library OpenCV, all of which enhance your AI/ML model-building journey. Among the diverse selection of GPUs available, certain servers are particularly well-suited for graphics-intensive tasks and multiplayer accelerated gaming experiences. Furthermore, instant jumpstart frameworks significantly boost the speed and flexibility of the AI/ML environment while ensuring effective and efficient management of the entire lifecycle. This advancement not only streamlines workflows but also empowers users to innovate at an unprecedented pace.
  • 20
    NVIDIA Brev Reviews
    NVIDIA Brev is designed to streamline AI and ML development by delivering ready-to-use GPU environments hosted on popular cloud platforms. With Launchables, users can rapidly deploy preconfigured compute instances tailored to their project’s needs, including GPU capacity, container images, and essential files like notebooks or GitHub repositories. These Launchables can be customized, named, and generated with just a few clicks, then easily shared across social networks or directly with collaborators. The platform includes a variety of prebuilt Launchables that incorporate NVIDIA’s latest AI frameworks, microservices, and Blueprints, allowing developers to get started without delay. NVIDIA Brev also offers a virtual GPU sandbox, making it simple to set up CUDA-enabled environments, run Python scripts, and work within Jupyter notebooks right from a browser. Developers can monitor Launchable usage metrics and leverage CLI tools for fast code editing and SSH access. This flexible, easy-to-use platform accelerates the entire AI development lifecycle from experimentation to deployment. It empowers teams and startups to innovate faster by removing traditional infrastructure barriers.
  • 21
    Neysa Nebula Reviews
    Nebula provides a streamlined solution for deploying and scaling AI projects quickly, efficiently, and at a lower cost on highly reliable, on-demand GPU infrastructure. With Nebula’s cloud, powered by cutting-edge Nvidia GPUs, you can securely train and infer your models while managing your containerized workloads through an intuitive orchestration layer. The platform offers MLOps and low-code/no-code tools that empower business teams to create and implement AI use cases effortlessly, enabling the fast deployment of AI-driven applications with minimal coding required. You have the flexibility to choose between the Nebula containerized AI cloud, your own on-premises setup, or any preferred cloud environment. With Nebula Unify, organizations can develop and scale AI-enhanced business applications in just weeks, rather than the traditional months, making AI adoption more accessible than ever. This makes Nebula an ideal choice for businesses looking to innovate and stay ahead in a competitive marketplace.
  • 22
    Beam Cloud Reviews
    Beam is an innovative serverless GPU platform tailored for developers to effortlessly deploy AI workloads with minimal setup and swift iteration. It allows for the execution of custom models with container start times of less than a second and eliminates idle GPU costs, meaning users can focus on their code while Beam takes care of the underlying infrastructure. With the ability to launch containers in just 200 milliseconds through a specialized runc runtime, it enhances parallelization and concurrency by distributing workloads across numerous containers. Beam prioritizes an exceptional developer experience, offering features such as hot-reloading, webhooks, and job scheduling, while also supporting workloads that scale to zero by default. Additionally, it presents various volume storage solutions and GPU capabilities, enabling users to run on Beam's cloud with powerful GPUs like the 4090s and H100s or even utilize their own hardware. The platform streamlines Python-native deployment, eliminating the need for YAML or configuration files, ultimately making it a versatile choice for modern AI development. Furthermore, Beam's architecture ensures that developers can rapidly iterate and adapt their models, fostering innovation in AI applications.
  • 23
    FluidStack Reviews

    FluidStack

    FluidStack

    $1.49 per month
    Achieve prices that are 3-5 times more competitive than conventional cloud services. FluidStack combines underutilized GPUs from data centers globally to provide unmatched economic advantages in the industry. With just one platform and API, you can deploy over 50,000 high-performance servers in mere seconds. Gain access to extensive A100 and H100 clusters equipped with InfiniBand in just a few days. Utilize FluidStack to train, fine-tune, and launch large language models on thousands of cost-effective GPUs in a matter of minutes. By connecting multiple data centers, FluidStack effectively disrupts monopolistic GPU pricing in the cloud. Experience computing speeds that are five times faster while enhancing cloud efficiency. Instantly tap into more than 47,000 idle servers, all with tier 4 uptime and security, through a user-friendly interface. You can train larger models, set up Kubernetes clusters, render tasks more quickly, and stream content without delays. The setup process requires only one click, allowing for custom image and API deployment in seconds. Additionally, our engineers are available around the clock through Slack, email, or phone, acting as a seamless extension of your team to ensure you receive the support you need. This level of accessibility and assistance can significantly streamline your operations.
  • 24
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Accelerate the building, training, and deployment of models at scale through a fully managed infrastructure that provides essential tools and streamlined workflows. Launch personalized AI and LLMs on any infrastructure in mere seconds, effortlessly scaling inference as required. Tackle your most intensive tasks with batch job scheduling, ensuring you only pay for what you use on a per-second basis. Reduce costs effectively by utilizing GPU resources, spot instances, and a built-in automatic failover mechanism. Simplify complex infrastructure configurations by deploying with just a single command using YAML. Adjust to demand by automatically increasing worker capacity during peak traffic periods and reducing it to zero when not in use. Release advanced models via persistent endpoints within a serverless architecture, maximizing resource efficiency. Keep a close eye on system performance and inference metrics in real-time, tracking aspects like worker numbers, GPU usage, latency, and throughput. Additionally, carry out A/B testing with ease by distributing traffic across various models for thorough evaluation, ensuring your deployments are continually optimized for performance.
  • 25
    Parasail Reviews

    Parasail

    Parasail

    $0.80 per million tokens
    Parasail is a network designed for deploying AI that offers scalable and cost-effective access to high-performance GPUs tailored for various AI tasks. It features three main services: serverless endpoints for real-time inference, dedicated instances for private model deployment, and batch processing for extensive task management. Users can either deploy open-source models like DeepSeek R1, LLaMA, and Qwen, or utilize their own models, with the platform’s permutation engine optimally aligning workloads with hardware, which includes NVIDIA’s H100, H200, A100, and 4090 GPUs. The emphasis on swift deployment allows users to scale from a single GPU to large clusters in just minutes, providing substantial cost savings, with claims of being up to 30 times more affordable than traditional cloud services. Furthermore, Parasail boasts day-zero availability for new models and features a self-service interface that avoids long-term contracts and vendor lock-in, enhancing user flexibility and control. This combination of features makes Parasail an attractive choice for those looking to leverage high-performance AI capabilities without the usual constraints of cloud computing.
  • 26
    Cake AI Reviews
    Cake AI serves as a robust infrastructure platform designed for teams to effortlessly create and launch AI applications by utilizing a multitude of pre-integrated open source components, ensuring full transparency and governance. It offers a carefully curated, all-encompassing suite of top-tier commercial and open source AI tools that come with ready-made integrations, facilitating the transition of AI applications into production seamlessly. The platform boasts features such as dynamic autoscaling capabilities, extensive security protocols including role-based access and encryption, as well as advanced monitoring tools and adaptable infrastructure that can operate across various settings, from Kubernetes clusters to cloud platforms like AWS. Additionally, its data layer is equipped with essential tools for data ingestion, transformation, and analytics, incorporating technologies such as Airflow, DBT, Prefect, Metabase, and Superset to enhance data management. For effective AI operations, Cake seamlessly connects with model catalogs like Hugging Face and supports versatile workflows through tools such as LangChain and LlamaIndex, allowing teams to customize their processes efficiently. This comprehensive ecosystem empowers organizations to innovate and deploy AI solutions with greater agility and precision.
  • 27
    Civo Reviews

    Civo

    Civo

    $250 per month
    Civo is a cloud-native service provider focused on delivering fast, simple, and cost-effective cloud infrastructure for modern applications and AI workloads. The platform features managed Kubernetes clusters with rapid 90-second launch times, helping developers accelerate development cycles and scale with ease. Alongside Kubernetes, Civo offers compute instances, managed databases, object storage, load balancers, and high-performance cloud GPUs powered by NVIDIA A100, including environmentally friendly carbon-neutral options. Their pricing is predictable and pay-as-you-go, ensuring transparency and no surprises for businesses. Civo supports machine learning workloads with fully managed auto-scaling environments starting at $250 per month, eliminating the need for ML or Kubernetes expertise. The platform includes comprehensive dashboards and developer tools, backed by strong compliance certifications such as ISO27001 and SOC2. Civo also invests in community education through its Academy, meetups, and extensive documentation. With trusted partnerships and real-world case studies, Civo helps businesses innovate faster while controlling infrastructure costs.
  • 28
    Sesterce Reviews
    Sesterce is a leading provider of cloud-based GPU services for AI and machine learning, designed to power the most demanding applications across industries. From AI-driven drug discovery to fraud detection in finance, Sesterce’s platform offers both virtualized and dedicated GPU clusters, making it easy to scale AI projects. With dynamic storage, real-time data processing, and advanced pipeline acceleration, Sesterce is perfect for organizations looking to optimize ML workflows. Its pricing model and infrastructure support make it an ideal solution for businesses seeking performance at scale.
  • 29
    Crusoe Reviews
    Crusoe delivers a cloud infrastructure tailored for artificial intelligence tasks, equipped with cutting-edge GPU capabilities and top-tier data centers. This platform is engineered for AI-centric computing, showcasing high-density racks alongside innovative direct liquid-to-chip cooling to enhance overall performance. Crusoe’s infrastructure guarantees dependable and scalable AI solutions through features like automated node swapping and comprehensive monitoring, complemented by a dedicated customer success team that assists enterprises in rolling out production-level AI workloads. Furthermore, Crusoe emphasizes environmental sustainability by utilizing clean, renewable energy sources, which enables them to offer economical services at competitive pricing. With a commitment to excellence, Crusoe continuously evolves its offerings to meet the dynamic needs of the AI landscape.
  • 30
    HorizonIQ Reviews
    HorizonIQ serves as a versatile IT infrastructure provider, specializing in managed private cloud, bare metal servers, GPU clusters, and hybrid cloud solutions that prioritize performance, security, and cost-effectiveness. The managed private cloud offerings, based on Proxmox VE or VMware, create dedicated virtual environments specifically designed for AI tasks, general computing needs, and enterprise-grade applications. By integrating private infrastructure with over 280 public cloud providers, HorizonIQ's hybrid cloud solutions facilitate real-time scalability while optimizing costs. Their comprehensive packages combine computing power, networking, storage, and security, catering to diverse workloads ranging from web applications to high-performance computing scenarios. With an emphasis on single-tenant setups, HorizonIQ guarantees adherence to important compliance standards such as HIPAA, SOC 2, and PCI DSS, providing a 100% uptime SLA and proactive management via their Compass portal, which offers clients visibility and control over their IT resources. This commitment to reliability and customer satisfaction positions HorizonIQ as a leader in the IT infrastructure landscape.
  • 31
    NVIDIA Triton Inference Server Reviews
    The NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process.
  • 32
    FPT Cloud Reviews
    FPT Cloud represents an advanced cloud computing and AI solution designed to enhance innovation through a comprehensive and modular suite of more than 80 services, encompassing areas such as computing, storage, databases, networking, security, AI development, backup, disaster recovery, and data analytics, all adhering to global standards. Among its features are scalable virtual servers that provide auto-scaling capabilities and boast a 99.99% uptime guarantee; GPU-optimized infrastructure specifically designed for AI and machine learning tasks; the FPT AI Factory, which offers a complete AI lifecycle suite enhanced by NVIDIA supercomputing technology, including infrastructure, model pre-training, fine-tuning, and AI notebooks; high-performance object and block storage options that are S3-compatible and encrypted; a Kubernetes Engine that facilitates managed container orchestration with portability across different cloud environments; as well as managed database solutions that support both SQL and NoSQL systems. Additionally, it incorporates sophisticated security measures with next-generation firewalls and web application firewalls, alongside centralized monitoring and activity logging features, ensuring a holistic approach to cloud services. This multifaceted platform is designed to meet the diverse needs of modern enterprises, making it a key player in the evolving landscape of cloud technology.
  • 33
    NVIDIA Picasso Reviews
    NVIDIA Picasso is an innovative cloud platform designed for the creation of visual applications utilizing generative AI technology. This service allows businesses, software developers, and service providers to execute inference on their models, train NVIDIA's Edify foundation models with their unique data, or utilize pre-trained models to create images, videos, and 3D content based on text prompts. Fully optimized for GPUs, Picasso enhances the efficiency of training, optimization, and inference processes on the NVIDIA DGX Cloud infrastructure. Organizations and developers are empowered to either train NVIDIA’s Edify models using their proprietary datasets or jumpstart their projects with models that have already been trained in collaboration with prestigious partners. The platform features an expert denoising network capable of producing photorealistic 4K images, while its temporal layers and innovative video denoiser ensure the generation of high-fidelity videos that maintain temporal consistency. Additionally, a cutting-edge optimization framework allows for the creation of 3D objects and meshes that exhibit high-quality geometry. This comprehensive cloud service supports the development and deployment of generative AI-based applications across image, video, and 3D formats, making it an invaluable tool for modern creators. Through its robust capabilities, NVIDIA Picasso sets a new standard in the realm of visual content generation.
  • 34
    Wallaroo.AI Reviews
    Wallaroo streamlines the final phase of your machine learning process, ensuring that ML is integrated into your production systems efficiently and rapidly to enhance financial performance. Built specifically for simplicity in deploying and managing machine learning applications, Wallaroo stands out from alternatives like Apache Spark and bulky containers. Users can achieve machine learning operations at costs reduced by up to 80% and can effortlessly scale to accommodate larger datasets, additional models, and more intricate algorithms. The platform is crafted to allow data scientists to swiftly implement their machine learning models with live data, whether in testing, staging, or production environments. Wallaroo is compatible with a wide array of machine learning training frameworks, providing flexibility in development. By utilizing Wallaroo, you can concentrate on refining and evolving your models while the platform efficiently handles deployment and inference, ensuring rapid performance and scalability. This way, your team can innovate without the burden of complex infrastructure management.
  • 35
    Google Cloud AI Infrastructure Reviews
    Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
  • 36
    IREN Cloud Reviews
    IREN’s AI Cloud is a cutting-edge GPU cloud infrastructure that utilizes NVIDIA's reference architecture along with a high-speed, non-blocking InfiniBand network capable of 3.2 TB/s, specifically engineered for demanding AI training and inference tasks through its bare-metal GPU clusters. This platform accommodates a variety of NVIDIA GPU models, providing ample RAM, vCPUs, and NVMe storage to meet diverse computational needs. Fully managed and vertically integrated by IREN, the service ensures clients benefit from operational flexibility, robust reliability, and comprehensive 24/7 in-house support. Users gain access to performance metrics monitoring, enabling them to optimize their GPU expenditures while maintaining secure and isolated environments through private networking and tenant separation. The platform empowers users to deploy their own data, models, and frameworks such as TensorFlow, PyTorch, and JAX, alongside container technologies like Docker and Apptainer, all while granting root access without any limitations. Additionally, it is finely tuned to accommodate the scaling requirements of complex applications, including the fine-tuning of extensive language models, ensuring efficient resource utilization and exceptional performance for sophisticated AI projects.
  • 37
    AWS Neuron Reviews
    It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions.
  • 38
    Amazon EC2 Capacity Blocks for ML Reviews
    Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
  • 39
    NVIDIA DGX Cloud Reviews
    The NVIDIA DGX Cloud provides an AI infrastructure as a service that simplifies the deployment of large-scale AI models and accelerates innovation. By offering a comprehensive suite of tools for machine learning, deep learning, and HPC, this platform enables organizations to run their AI workloads efficiently on the cloud. With seamless integration into major cloud services, it offers the scalability, performance, and flexibility necessary for tackling complex AI challenges, all while eliminating the need for managing on-premise hardware.
  • 40
    Lumino Reviews
    Introducing a pioneering compute protocol that combines integrated hardware and software for the training and fine-tuning of AI models. Experience a reduction in training expenses by as much as 80%. You can deploy your models in mere seconds, utilizing either open-source templates or your own customized models. Effortlessly debug your containers while having access to vital resources such as GPU, CPU, Memory, and other performance metrics. Real-time log monitoring allows for immediate insights into your processes. Maintain complete accountability by tracing all models and training datasets with cryptographically verified proofs. Command the entire training workflow effortlessly with just a few straightforward commands. Additionally, you can earn block rewards by contributing your computer to the network, while also tracking essential metrics like connectivity and uptime to ensure optimal performance. The innovative design of this system not only enhances efficiency but also promotes a collaborative environment for AI development.
  • 41
    Substrate Reviews

    Substrate

    Substrate

    $30 per month
    Substrate serves as the foundation for agentic AI, featuring sophisticated abstractions and high-performance elements, including optimized models, a vector database, a code interpreter, and a model router. It stands out as the sole compute engine crafted specifically to handle complex multi-step AI tasks. By merely describing your task and linking components, Substrate can execute it at remarkable speed. Your workload is assessed as a directed acyclic graph, which is then optimized; for instance, it consolidates nodes that are suitable for batch processing. The Substrate inference engine efficiently organizes your workflow graph, employing enhanced parallelism to simplify the process of integrating various inference APIs. Forget about asynchronous programming—just connect the nodes and allow Substrate to handle the parallelization of your workload seamlessly. Our robust infrastructure ensures that your entire workload operates within the same cluster, often utilizing a single machine, thereby eliminating delays caused by unnecessary data transfers and cross-region HTTP requests. This streamlined approach not only enhances efficiency but also significantly accelerates task execution times.
  • 42
    NVIDIA NIM Reviews
    Investigate the most recent advancements in optimized AI models, link AI agents to data using NVIDIA NeMo, and deploy solutions seamlessly with NVIDIA NIM microservices. NVIDIA NIM comprises user-friendly inference microservices that enable the implementation of foundation models across various cloud platforms or data centers, thereby maintaining data security while promoting efficient AI integration. Furthermore, NVIDIA AI offers access to the Deep Learning Institute (DLI), where individuals can receive technical training to develop valuable skills, gain practical experience, and acquire expert knowledge in AI, data science, and accelerated computing. AI models produce responses based on sophisticated algorithms and machine learning techniques; however, these outputs may sometimes be inaccurate, biased, harmful, or inappropriate. Engaging with this model comes with the understanding that you accept the associated risks of any potential harm stemming from its responses or outputs. As a precaution, refrain from uploading any sensitive information or personal data unless you have explicit permission, and be aware that your usage will be tracked for security monitoring. Remember, the evolving landscape of AI requires users to stay informed and vigilant about the implications of deploying such technologies.
  • 43
    Krutrim Cloud Reviews
    Ola Krutrim is a pioneering platform that utilizes artificial intelligence to provide an extensive range of services aimed at enhancing AI applications across multiple industries. Their array of services features scalable cloud infrastructure, the deployment of AI models, and the introduction of India's very first domestically manufactured AI chips. By leveraging GPU acceleration, the platform optimizes AI workloads for more effective training and inference. Moreover, Ola Krutrim offers advanced mapping solutions powered by AI, efficient language translation services, and intelligent customer support chatbots. Their AI studio empowers users to easily deploy state-of-the-art AI models, while the Language Hub facilitates translation, transliteration, and speech-to-text services. Dedicated to their mission, Ola Krutrim strives to equip over 1.4 billion consumers, developers, entrepreneurs, and organizations in India with the transformative potential of AI technology, allowing them to innovate and thrive in a competitive landscape. As a result, this platform stands as a vital resource in the ongoing evolution of artificial intelligence across the nation.
  • 44
    Thunder Compute Reviews

    Thunder Compute

    Thunder Compute

    $0.27 per hour
    Thunder Compute is an innovative cloud service that abstracts GPUs over TCP, enabling developers to effortlessly transition from CPU-only environments to expansive GPU clusters with a single command. By simulating a direct connection to remote GPUs, it allows CPU-only systems to function as if they possess dedicated GPU resources, all while those physical GPUs are utilized across multiple machines. This technique not only enhances GPU utilization but also lowers expenses by enabling various workloads to share a single GPU through dynamic memory allocation. Developers can conveniently initiate their projects on CPU-centric setups and seamlessly scale up to large GPU clusters with minimal configuration, thus avoiding the costs related to idle computation resources during the development phase. With Thunder Compute, users gain on-demand access to powerful GPUs such as NVIDIA T4, A100 40GB, and A100 80GB, all offered at competitive pricing alongside high-speed networking. The platform fosters an efficient workflow, making it easier for developers to optimize their projects without the complexities typically associated with GPU management.
  • 45
    Skyportal Reviews

    Skyportal

    Skyportal

    $2.40 per hour
    Skyportal is a cloud platform utilizing GPUs specifically designed for AI engineers, boasting a 50% reduction in cloud expenses while delivering 100% GPU performance. By providing an affordable GPU infrastructure tailored for machine learning tasks, it removes the uncertainty of fluctuating cloud costs and hidden charges. The platform features a smooth integration of Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, all finely tuned for Ubuntu 22.04 LTS and 24.04 LTS, enabling users to concentrate on innovation and scaling effortlessly. Users benefit from high-performance NVIDIA H100 and H200 GPUs, which are optimized for ML/AI tasks, alongside instant scalability and round-the-clock expert support from a knowledgeable team adept in ML workflows and optimization strategies. In addition, Skyportal's clear pricing model and absence of egress fees ensure predictable expenses for AI infrastructure. Users are encouraged to communicate their AI/ML project needs and ambitions, allowing them to deploy models within the infrastructure using familiar tools and frameworks while adjusting their infrastructure capacity as necessary. Ultimately, Skyportal empowers AI engineers to streamline their workflows effectively while managing costs efficiently.